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Symbolic Artificial Intelligence
* Prescriptive in nature
« Useful for automation

 Works well in known environments

Neural Machine Learning
* Predictive in nature
« Useful for autonomy

* Works well in unknown environments by learning
from data/experience
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* Prescriptive in nature » Predictive in nature

« Useful for automation « Useful for autonomy

» Works well in known environments * Works well in unknown environments by learning

from data/experience

Symbolic Reasoning “ Neural Learning
Low-capacity sparse representation High-capacity dense representation

Neurosymbolic Artificial Intelligence for improved:

» Reliability

« Safety

« Efficiency

» Robustness

« Trust (e.g. Transparency, verifiability, or explainability)
« Generalization to out-of-distribution data

THE AIR FORCE RESEARCH LABORATORY

INNOVATE, ACCELERATE, THRIVE — THE AIR FORCE AT 75



\¢ U S. Air Force

Established 1947

Neuro-Symbolic Al

Symbolic Artificial Intelligence Neural Machine Learning

* Prescriptive in nature » Predictive in nature

« Useful for automation « Useful for autonomy

* Works well in known environments * Works well in unknown environments by learning

from data/experience

Symbolic Reasoning “ Neural Learning
Low-capacity sparse representation High-capacity dense representation

Physics Inspired Neural Networks

Data Symbolic knowledge Results
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dx? dx

Physics of 1D damped harmonic oscillator
(parameters to be learned)

Neural network fitting to data

Damping oscillator model included in loss function for training, demonstrates better generalization
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The Need for Safe Al: A Quotidian Perspective

"The car assumed that the bus would yield when it attempted to merge %

back into traffic"
[1] A Google self-driving car caused a crash for the first time.
http://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report. (2016).

esla Model S travels with the
BAutopilot activated

indshield hits trailer which
rears up the roof, but a3
ehicle passes underneath
-

"The camera failed to recognize the white truck against a

bright sky“
= [2] Understanding the fatal Tesla accident on Autopilotand the
| HTsA ot
o _ https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-

autopilot-nhtsa-probe/. (2016).
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The Need for Safe Al: Neuro-Symbolic Integration

"The car assumed that the bus would yield when it attempted to merge

back into traffic"
[1] A Google self-driving car caused a crash for the first time.
http://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report. (2016).

Neural Representation

-t O Symbolic

S : = S =7 output layer Represe ntation

0
2 S "The camera failed to recognize the white truck against a
AR N Z : bright sky*“
SN S 2 [2] Understanding the fatal Tesla accident on Autopilotand the

g = N i} NHTSA probe.
S e SN o . .

e RN e —~3 https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-

N autopilot-nhtsa-probe/. (2016).
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The Need for Trusted Al: A Government Perspective

EXECUTIVE ORDERS

Executive Order on Maintaining
American Leadership in Artificial
Intelligence

—— INFRASTRUCTURE & TECHNOLOGY Issued on: February 11,2019

SUMMER STUDY ON

AUTONOMY

National Defense Strategy

The United States of America

Sharpening the American Military’s Competitive Edge

o

“...[must] reduce barriers to the safe testing and deployment
of Al technologies...”

“The United States must foster public trust and confidence in Al
technologies...”

“Ensure that technical standards minimize vulnerability

to attacks from malicious actors...”

“...[identify] safety and security concerns, including those
related to the association or compilation of data and models...”

...[adaptive] systems will outgrow

their initial verification and validation

and will require more dynamic

methods...” °
“...the [autonomous] machine must be

auditable—in other words, be able to

preserve and communicate an

immutable, comprehensible record of
the reasoning behind its decisions...”

* “We must anticipate how
competitors and

of adversaries will employ

new operational concepts

and technologies...”

Congressional
Research Service

Informing the legislative debate since 1914

Established 1947

DEPARTMENT OF DEFENSE
ARTIFICIAL INTELLIGENCE
STRATEGY

Harnessing Al to Advance
Our Security and Prosperity

“... [we must] lead the world in the development and
adoption of transformative defense Al solutions that are
safe, ethical, and secure.”

“The speed and scale of the change required are
daunting...”

* “Increasing explainability will be
key to humans building appropriate
levels of trust in Al systems.”

Updated January 30, 2019

Artificial Intelligence and National Security

* “These [data] vulnerabilities
highlight the need for robust data
security, cybersecurity, and testing
and evaluation processes...”
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The Need for Efficient Al: Successes in Autonomy

RL with DNN

learns to play Atari

Games and Tetris
(201 3)

AlphaGo beats Lee
Sedol (2016),
AlphaZero beats
AllphaGo (2017)

Libratus defeats
four top players in
120,000 hands
no-limit Texas
hold’em (2017)

DOTA bot beats
champions in a
more “tactical”

strategy game
(2017)

JRRD, g A3,
DeepMind

AlphaStar beats
‘NaMa” and “TLO”
/n Starcraft /l: a
high dimensional
RTS game (2019)

lv]

lv]

lvi
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Reinforcement
Learning (RL)

Ensemble
Supervised
Learning and/or
RL

Game Theory +
Deep RL

RL with Hand
Feature Encoding

Supervised
Learning + RL

Perfect
Information

Perfect
Information
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> 10,000,000 games played
to match human performance!

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree
search.” nature 529.7587 (2016): 484.
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The Need for Efficient Al: OpenAl Five

OPENAI 1V1 OPENAI FIVE

BOT
CPUs 60,000 CPU 128,000 preemptible CPU cores on GCP
cores on
Azure
GPUs 256 K80 GPUs 256 P100 GPUs4¢pn GCP
on Azure
Experience ~300 years ~180 years per day (~900 years per day & &
collected per day counting each weparat ) K
Size of observation ~3.53kB ~36.8 kB
Observations per 10 75
second of gameplay
Batch size 8,388,608 1,048,576 observations

observations

Batches per minute ~20 ~60
OpenAl, “OpenAl Five”, https://blog.openai.com/openai-five/, 2018

The OpenAl Five agents used to defeat world-class players at the game Defense Of The Ancients (DOTA) collected
900 years of real-time data per day for a total of 45000 years worth of data.
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The Need for Efficient Al: AlphaStar

limit <22 per 5 s (‘&’/\,Iilcqucste:: delay ~200 ms

. > 60, 000 years of games played!

Y
) Supervised 936
No human data} 149
('J 6(')0 1 ,2'00 1 ,éoo 2,4100

Test Elo

971k replays from top 22% of humans
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The Need for Efficient Al: Slow High-Fidelity Platforms

AFSIM - OPSIM AWSIM

Runtime: Runtime:
Minutes per execution Minutes per execution

Runtime:
< , Hours per execution

Y

10 million executions = years of runtime
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The Need for Reliable Al: Sparse Rewards

@ &
o°°0<°®(\
. © @
Reward based on mission success ,\6“,\0\0
—|Sparse reinforcement] Q\(\Q &
&
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The Need for Reliable Al: Reward Hacking

Reward based on mission success Reward shaping can lead to
— Sparse reinforcement reward hacking

1111
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The Need for Robust Al: Adversarial Attacks

Adversarial Deep Reinforcement Learning
Adversary (in red) wins 86% of times by simply producing unexpected observations
(falling down) for victim (in blue) in a “You Shall not Pass” game

Normal

Adversarial

Gleave, Adam, et al. "Adversarial policies: Attacking deep reinforcement learning." arXiv preprint
arXiv:1905.10615 (2019).
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Opportunity: Early Success in Neuro-Symbolic Al

100x less data for classification [1] o
Interpretable classification [2]

100
g { (Whiskers ® Tail ® (Laser pointer = Chases)) - Cat \
80 7 S
g (Cat @ Dog) — Pet
g 60 ‘

7000 70000 700000
Number of training questions

Q: What number of cylinders are gray
objects or tiny brown matte objects?

Logically consistent learning 3]

[Whiskers] [Tail]

Story so far Candidate next sentences [ Laser pOl nter]
Mary dropped the apple there.
Daniel went to the garden.
Systern 1 ) Mary traveled to the office. = Generate = Daniel went back to the garden.
fost and intitive f s (ex. GPT-3) (a) The LNN graph structure reflects the
Daniel went to the patio. Final generation f 1 .
ormulae 1t represents.
L Pa{se Pa{se Daniel went to the garden. p
B Mary traveled to the office.
(GPT-3) (GPT-3) Daniel grabbed the apple.
* * Daniel went to the patio.
ooystem?2 World Model drop(Mary, apple)
slow and logical
. i Check . . . . . ..
Daniel.location = garden (s mﬁf,uc) go(Daniel, garden) ® 1] Vi, Kexin, et al. "Neural-symbolic vga: Disentangling reasoning from vision and language
apple.holder = Daniel ol
Mary.location = office go(Daniel, patio) understanding.” arXiv preprlnt arXiv:1810.02338 (2018).
- [2] Rlegel Ryan etal.’ Loglcal neural networks arXiv preprlnt arXiv:2006.13155 (2020).
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Opportunity: Early Success in Neuro-Symbolic Autonomy

Sparse symbolic reward specifications Learning symbolic representations from
observations |

I
Mohammad hosein, et
/ \ . ) al. "DeepSynth: =5
. Automata synthesis for
At F 3 . automatic task
m \ segmentation in deep
reinforcement DFA state

A A 4 A # learning.” AAAI 2021. s,
m 0 0V rope (Vv right_ladder
rope A right_ladder

> 43 > (4

Automaton-Guided Tree Search (AGTS)

house

Hasanbeig,

Q(s,a)

Qq(s,a)

Velasquez, Alvaro, et al. "Dynamic Automaton-Guided Reward
Shaping for Monte Carlo Tree Search.” AAAI 2021. start = @

Learning symbolic representations from NN’s

RNN

Trainine Data
& 7 (GRU,LSTM) _ Finite State Model
train mine

left_ladder right_ladder

q(icwof:False

) (przfr:False ~DNN model 0V middle_ladder left ladder
crna(pp:False — NP NI

: P et ke S e e T W
vuuyduxf: True "‘al_'gt__'_'___ . . —a:/j_:x.!-) door

txhjswjt:True
t(obajk): True key

) @V left_ladder

Muskardin, Edi, et al. "Learning Finite State Models from Recurrent Neural Networks."
International Conference on Integrated Formal Methods. Springer, Cham, 2022.
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From Neurons to Symbols

o
3
O m
35
HEAEE
3 av]
X

|

+— @00000A0
L%
|

Reconstructed 5
5 p

* Program synthesis using NNs. = o »

Execute l Execute 1
Trivedi, Dweep, et al. "Learning to iy gy
synthesize programs as interpretable
and generalizable policies." Advances ¢ ! ¢

in neural information processing
systems 34 (2021): 25146-25163.

ap, 4z, ..., a¢ ay, g, ..., 4t Ay, a2, ..., a¢
| | i

(a) Learning Program Embedding Stage

» Symbolic finite-state controllers from RNNSs.

Encoder Decoder
Inout Recurrent Softmax
fpt Layer Layer
a
Z a9
as

Established 1947

Cross Entropy Method

Candidate Candidate
Latent Program Latent Programs ;

Noise

/\/\ Sample
+ - -

(@le[0/0[0/0[0)

(0,0/0,0,0/0/0)

(@lo[0]0[0[010)

T S
/—\\ Predicted
Environment Program
a

(b) Latent Program Search Stage

Carr, Steven, Nils Jansen, and Ufuk Topcu.
"Task-aware verifiable RNN-based policies
for partially observable Markov decision
processes." Journal of Artificial
Intelligence Research 72 (2021): 819-847.

(a) RNN-based Policy 7.

activation 6: R — {—1,0,1}.

(b) RNN block and associated QBN of B;, = 3 with quantized
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From Symbols to Neurons

+ Differentiable logics E .| |3 —

¥ nEin — 9-¢ Innes, Craig, and Ram

; RGBImase ) || | o2 bounds Ramamoorthy. "Elaborating on
Lot <tg.1) =max(ti(z) — ta(2),0 “bounds 51 5
el “ ) ( 1(8) — £2(0),0) ol M FLi2 " ow Learned Demonstrations with
Le( ) t Bk Temporal Logic
L.( ) y_start Specifications." Robotics: Science
Lo ) e ) and Systems 2020. 2020.
End Effector y_start
Pose y_goal

 Discrete optimization using neural networks

Hidden Layer 2

Py -
Jy ) Hidden Layer 1 PETI leme Output Layer
. 3 =] =1 ~.o
1 L } ' .0;_1_—.\ \_\'\,\
—— cams S vy A.o___.; i '\.\'\
>~ ¥ 7. =1 = TN
Wl R S —— @, fO)==> o0, —1/2)+n >  o(b,+0,—1)
A W 3 1] 3 5 7
/\"-‘y I\v‘/ 1 .= veV (u,v)eE
W@ =5 === .—- nodes | 3
|E(G)| = 4 edgesof G

Alkhouri, Ismail R., George K. Atia, and Alvaro
Velasquez. "A differentiable approach to the
Figure 2:  An example of graph G = (V= A{v,v,v3,v,vs}hE = maximum independent set problem using dataless

{(v1,v2), (v1,v3), (v2,v4), (v2,v5)}) and its ANN construction f for the MIS problem. neural networks." Neural Networks (2022).
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Yu, Jiahui, et al. "Scaling autoregressive models

Of N eurons an d Sym bO I S for content-rich text-to-image generation.” arXiv
preprint arXiv:2206.10789 (2022).
Neurosymbolic Representation Emerging Architectures

Learning and Reasoning

Established 1947

Prompt: “A punk rock
squirrel in a studded

leather jacket shouting
Neural Sym bolic into a microphone while
. ) standing on a stump
Represe ntat|0n Represe ntat|0n and holding a beer on
dark stage. dslr photo.”

o Nty > to,1) Prompt: “A plate that has no bananas on it.
There is a glass without orange juice next to it.”
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Conclusion and Avenues of Inquiry

1. The integration of symbolic reasoning and neural pattern recognition has the potential to
significantly improve efficiency, robustness, and trust in deep learning systems.

2. How can we make progress toward solving the variable binding problem of learning
semantically meaningful symbols? How do we reason about neurons and symbols
simultaneously?

3. What does the ImageNET moment look like for neuro-symbolic Al?

4. How do we measure the quality of neuro-symbolic Al? The need for metrics.

5. Powerful emerging architectures may pave the way for neuro-symbolic Al.
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