NeurASP =
Neural Network + ASP

About 40% of the slides in this deck are based on slides by Zhun Yang.



Some neuro-symbolic approaches

We have some knowledge about the domain that we want to incorporate to our neural
learning and reasoning framework. How do we do it?

* Distillation based approach
* Compile into the loss function
* Have a separate symbolic reasoning and filtering layer

Neural networks that generate code (or a collection of structured facts) which then gets
implemented by a program lead to another kind of neuro-symbolic integration.

Neural models where each neuron has symbolic meaning and the overall network can
learn various aspects from noisy data

* capture logical contradiction
* learn explainable rules
Neuro-symbolic approaches in planning and acting domains:

* partially neural reinforcement learning (RL) framework for the continuous state and
action space domain

* neuro-symbolic architecture that learns state transitions from images
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Abstract

We present NeurASP, a simple extension of an-
swer set programs by embracing neural networks.
By treating the neural network output as the prob-
ability distribution over atomic facts in answer set
programs, NeurASP provides a simple and effec-
tive way to integrate sub-symbolic and symbolic
computation. We demonstrate how NeurASP can
make use of a pre-trained neural network in sym-
bolic computation and how it can improve the neu-
ral network’s perception result by applying sym-
bolic reasoning in answer set programming. Also,
NeurASP can make use of ASP rules to train a neu-
ral network better so that a neural network not only
learns from implicit correlations from the data but
also from the explicit complex semantic constraints

of DeepProbLog [Manhaeve et al., 2018], by treating the neu-
ral network output as the probability distribution over atomic
facts in answer set programs, the proposed NeurASP pro-
vides a simple and effective way to integrate sub-symbolic
and symbolic computation.

We demonstrate how NeurASP can be useful for some
tasks where both perception and reasoning are required. Rea-
soning can help identify perception mistakes that violate se-
mantic constraints, which in turn can make perception more
robust. For example, a neural network for object detection
may return a bounding box and its classification “car,” but it
may not be clear whether it is a real car or a toy car. The
distinction can be made by applying reasoning about the re-
lations with the surrounding objects and using commonsense
knowledge. When it is unclear whether a round object at-
tached to the car is a wheel or a doughnut, the reasoner could
conclude that it is more likelv to he a wheel bv annlvine com-



NeurASP

" Neural Network ) 4 ASP )
raw and big data domain knowledge
scalability —, data efficiency
modeling capability interpretability
robustness against faults provable correctness
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Why Answer Set Programs?

« Answer Set Programming (ASP) is a logic programming paradigm.

« combinatorial search
- knowledge intensive tasks

- ASP has well-developed foundations, efficient reasoning systems, and a
methodology of use tested on a number of industrial applications.

- ASP supports a rich set of KR constructs that allow for convenient
representation of complex knowledge.

- Aggregates - Choicesrules -+ Default - Optimization rules

Based on slides by Zhun Yang



Answer Set Programs — a quick overview

An ASP program is a collection of rules of the form:

Ao < Q1,y...,0py,N0t Amy1,...0n0t ay.

where a;s are atoms in the sense of predicate logic. Intuitively, the meaning of the above rule is
that if a4, ..., a,, are true and a,,+1, ..., a, can be safely assumed to be false, then ag must be true.
If the right hand side of a rule is empty (i.e., m = n = 0) then we refer to it as a fact. The semantics
of ASP programs that do not have not in their rules is defined by their unique least model.



ASP Examples

The ancestor program
anc(X,Y) < par(X,Y).
anc(X,Y) < par(X, Z),anc(Z,Y).
par(a,b). par(b,c). par(c,d). par(e, f).

* Using the above program we not only conclude the facts, but also conclude:
anc(a,b), anc(b,c), anc(c,d), and(e,f), anc(a,c), anc(b,d), and anc(a,qd).



A key ASP construct — The default “not”

Expressing normal properties: Normally crows are black

black(X) < crow(X), not ab(X).
ab(X) < albino_crow(X).
crow(X) < albino_crow(X).
white(X) < albino_crow(X).

crow(banjo).
albino_crow(willow).

we will be able to conclude black(banjo) and white(willow)



Semantics of Answer Set Programs

Examples with unique answer sets

* Programs without not: The unique least model. For the following program, it is

{}.
P < D.
* Some programs with not
* {a} is the only answer set of the program: @ <= not b.

* {q} is the only answer set of the program: ¢ ¢~ not p.
p < D.



Semantics of Answer Set Programs

Examples with multiple answer sets (also called as stable models)

* The following program has two answer sets: {a, p} and {b, p}

D < a.
p < b.
a < not b.
b < not a.

Given a ground ASP program II a set of ground atoms S is a stable model of II iff S is the
unique least model of the program II° obtained from II by (a) removing all rules from II that have
a not f in its body where f € S, and (b) removing all not literals from the body of the rest of the

rules. Stable models of non-ground ASP programs are defined as the stable models of their ground
version.



ASP Solvers introduce useful syntactic sugar
Choice rules

D a.

P < a.
D=0 p<b. {a;b) = 1.
a < not b. 1{a; b}1.
b < not a. ’
* More generally: u{ay;ag;...;an}tv.

* What does this fact mean:  {val(d) =0;...;val(d) =9} = 1.



Example Answer Set Program

ASP Program II for Digit Addition

_ /{ digit(di)=0 ; .. ; digit(d1)=9 }=l\.
choice rules o o
{ digit(dz2)=0 ; .. ; digit(dz2)=9 }=1
addition(A, B, N) « digit (A)=Ni,
digit (B) =Nz,
\ N = Ni+N2. /

Example Stable Model
M = {digit(di1)=3, digit (d2)=0,
addition (di,dz2, 3) }

Based on slides by Zhun Yang
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Graph Coloring Using ASP

Can the graph be colored by n colors so that no two adjacent vertices have the same color?

c(le-n)-.

1 {color(X,I) : c(I)} 1 :- v(X).

= color(X,I), coloxr (Y, L), e(X, Y), c(I).

v(1..100).

$1,...,100 are vertices
e(l,55).

% there is an edge from 1 to 55



NeurASP = NN + ASP, but why?

NeurASP allows one to train a NN under weak supervision.

Perception and reasoning are separated so as to achieve higher accuracy
with less data.

Reasoning can help identify perception mistakes that violate semantic
constraints, which in turn can make perception more robust.

NeurASP is more elaboration tolerant on visual tasks.
NeurASP extends classification to context relational classification

A neural network can be trained together with rules so that it not only learns
from implicit correlations from the data but also learns from explicit complex
semantic constraints expressed by ASP rules.

Based on slides by Zhun Yang
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How does NeurASP work?



Neural Atom

Links neural network outputs to atoms in an ASP program.

ASP Program II for Digit Addition

/;7digit(d1)=0 .
{ digit(dz2)=0 ; ..

addition (A, B, N)

\_

; digit (di)=9 }=£>
; digit (d2)=9 }=1.
— digit (A)=N1,

digit (B) =Nz,
N = N1 + No2.

J

—Pn(addition (di, dz, 3))

We use neural network digit to classify the image di, and
the output p1.iforiin {0, ..., 9} defines the probability of digit (di)=1.

} neural

di networ —
k

[’ digit

dz

neural atom:

nn( digit,

di1 ,1,

Based on slides by Zhun Yang
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NeurASP notations

A NeurASP program combines a set of neural networks with an ASP program. Each neural network
is assigned a name, and it takes an input and assigns values (with assigned probabilities) to one or
more of its (output) attributes. For example, consider a neural network for MNIST. This neural
network will take an image as an input and assign probabilities to the single output attribute digit
with respect to the values 0 ... 9. In the NeurASP framework this neural network denoted by
M nist_nn Will be specified by the following neural atom:

nn(mnist_nn, mnist_input,1,{0,1,2,3,4,5,6,7,8,9}).

where, mnist_nn is the name of the neural network, mnist_input refers to an input, 1 denotes the
number of attributes, and {0,1,2,3,4,5,6,7, 8,9} refers to the value the attribute can take. The neu-
ral network M ,.ist_nn Will then define a probability function denoted by M, p:st_nn(mnist_input)[1, v]
such that ZUG{O,...,Q} M nist_nn(mmnist_input)[1,v] = 1.
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NeurASP - Sudoku

Now consider a neural network Mg, doku_nn that takes an image of the initial state of a Sudoku
game and assigns probabilities to the 81 output attributes, each expressing what is the value in one
of the 81 squares, with respect to the values empty, and 1 ... 9. In the NeurASP framework this
neural network My, qoku_nn Will be specified by the following neural atom:

nn(sudoku_nn, sudoku_input, 81, {empty, 1,2,3,4,5,6,7,8,9}).

where, sudoku_nn is the name of the neural network, sudoku_input refers to an input, 81 de-
notes the number of attributes, and {empty,1,2,3,4,5,6,7,8,9} refers to the value the attributes
can take. The neural network Mg, qoku.nn Will then define a probability function denoted by
My doku_nn (sSudoku_input)[i, v] such that

for 1 <1 < 81, M svdoku_nn(sSudoku_input)|i,v| = 1.
ve{empty,l1,...,9}
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NeurASP Syntax

In general, a neural network M,,,m. is specified by a neural atom of the form

nn(name, input, no_attr, value_set)

where name is the name of the neural network, input is the input to the neural network, no_attr
refers to the number of attributes that neural network is trying to assign values, and value_set is
a set of values that each of the attributes can take. The neural network M, ,me then defines a
probability function denoted by My, qme(input)[no_attr,v] such that
for 1 < i < mno.attr, ) M ame(input)[i, v] = 1.

vEvalue_set
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NeurASP Inference

Infer the probabilities of stable models and formulas.

F

d1

/

d2

trained
p1,0
neural |'o'1',9
— networ — —
2,0
k"
digit D29

* Suppose Mi,; =

> Pn(Mi,5) = pt.i X p2,

ASP Program II for Digit Addition

/?»digit(dl)zo ;
{ digit(d2)=0 ;
addition (A, B, N)

\_

; digit (di)=9 }=£>
; digit (d2)=9 }=1.

— digit (A)=N1, —Pn(addition (di, dz, 3))

digit (B) =Nz,
N = N1 + N2. 4/

pLi
{digit (d1)=i,

P2,
digit (d2)=7, addition(di,dz,1+73)}

(fori, jin {0, ..., 9}

> Pn(addition (di,dz, 3)) = Pn(Mo,3) + Pn(Mz1,2) + Pn(Mz2,1) + Pn(Ms, o)

Based on slides by Zhun Yang
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Semantics of NeurASP — Stable Model

The semantics of NeurASP defines a stable model and its probability orienting from the NN outputs.
For each NeurASP program II, we obtain its ASP counterpart I’ by replacing each neural atom

nn(m, t, e, {w, ey vn})
with the set of choice rules

{mi(t)=vs ; ... ; mi(t)=vn }=1 forie{s, ..., ¢.

 The stable models of I are the stable models of IT'.

EX.
Let ‘]\/lcﬁgit be a neural network that classifies an MNIST digit image. Consider the NeurASP program II below.
nn( digit,d,1,{0,1,2,3,4,5,6,7,8,9})
Its ASP counterpart IT’ is

{ digiti(d)=0 ; .. ; digiti1(d)=9 }=1
Thus the stable models of I1I are the 10 stable models of IT’ below.
{digiti1(d)=0} {digiti(d)=1} .. {digiti(d)=9}

26
Based on slides by Zhun Yang



EX.

Semantics of NeurASP — Probability

Recall that we turn each neural atom  nn(m, t, e, {vs, ..., va}) into the set of choice rules
{mi(t)=v: ; ... ; mi(t)=vn }=1 forie{u, ..., ¢.
- Let o7 denote the set of atoms mi(t)=v; obtained from neural atoms as described above.

+ With the input tensor (identified by) t, we assume neural network ‘M (identified by m) outputs a matrix in R €X7,
The n numbers in the i-th row define the probability distribution of the following n atoms.

mi(t)=w R mi(t)=\/z, e mi(t)=\/n
+ The probability of a stable model 7 of Il is the product of the probabilities of all atoms in 7 N ™.

Consider the NeurASP program II below.
nn( digit, d, 1, {0,1,2,3,4,5,6,7,8,9} )
Suppose the output of ‘M given input tensor dis [o, o0, 0.3, 0, 0, 0, 0, 0.6, 0, 0.1], then
the probability of 1o={digit:(d)=of is Pu(1o) = 0

the probability of 1o={digit:(d)=9o} is Pn(1,) = 0.1

Based on slides by Zhun Yang o



NeurASP Learning

Back-propagate gradients to the neural network through the chain rule.

ASP Program II for Digit Addition

9, P1,0 (digit(d1)=0 ; .. ; digit(di)=9 }:1\. data inst
e | { digit(d2)=0 ; .. ; digit(dz)=9 }=1. ata instance

d1 neural P, L9 gi e

~ network - 20— addition (A, B, N) « digit (A)=Ni, — addition (di,d2, 3)
/ ne b2 digit (B) =Nz,

digit I.3.2.,9 K N = N1 + No2. /

dz \/ '\

0Py (addition(dy, ds, 3)) 3 0Py (addition(d, ds, 3)) Op;.;

9 ie{1,2} Ipi,; 00
j€{0,...,9}

Based on slides by Zhun Yang »8



Gradients Computation

Proposition 1 Let I1(6) be a NeurASP program and let O
be an observation such that Prg)(O) > 0. Let p denote

Given the probability of an atom ¢ = v in c"", ie., p denotes
- a NeurASP program II Pri(g)(c = v). We have that'
 an observation O
? P I P I
for each NN output p for atom I_%;O —pn?;)e()c(:l) - ,Z_ pn(r;?c(:z),,)
c=v, we Olog(Pr(9)(0))  Te=v I g
Op B > Pre)

1. find all stable models | of [IUO I: I=0
2. compute the probability Pr(l)
3. use Prop 1 to compute  9log(Pu)(0))
4. use the chain rule to further ~ 9p

backward to NN parameters

8oge:o t09(Pri(e) (0)) — 5 alOQ(PH(e)(O))

00 - 39 Based on slides by Zhun Yang
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Example NeurASP Program: Sudoku =
Task: given an image of Sudoku board, predict the solution. s ; 3N
img
4 Use NN identify to identify the digits in each of the 81 grid cells. N\
nn(identify, img, 81, {empty,1,2,3,4,5,6,7,8,9}).
* Assign one number to each cell i for i € {1, ..., 81}.

a(R,C,N) « identifyi(img)=N, R=i/9, C=i\9, N#empty.
{a(R,C,1); ..; a(R,C,9)1}=1 « identifyi(img)=empty, R=1i/9, C=i\9.
* No number repeats in the same row, column, and 3X3 box.
~ a(R,Cy,N), a(R,C2,N), Ci#Cz.
~ a(Ri,C,N), a(Rz,C,N), Ri#Rz.
\_ - a(Ri;,C1;,N), a(Re,Cs,N), Ri#Rz, Ci#Cz, ((R1/3)X3+C1/3) = ((R2/3)X3+C2/3) )

Basg((’:l on slides by Zhun Yang




Reading a number between 1 to 16

nn(num, X, 1, {blank,0,...,9}) < img(X).

Knowing that the two numerals that the model is reading represents a number between 1 to 16,
we can express that knowledge as follows: (a) the image [ is either blank, or a one and (b) the image
r is (i) between 1 to 9, if the image [ is a blank, and (ii) between 0 to 6, if if the image [ is a one.
This is expressed as the ASP program in Figure 1.

ASP |
| ’ 1 r’ 3 {num; (1) = blank;num,(l) = 1} = 1.
' I i...;numy(r) =9} = 1 < num, (l) = blank. —
(r) =6

{num,(r) =
‘ Neural Network M, — {num;(r) } =1+ numy(l) =1.

|

PiiPiir Prie-Pras

Figure 1: A NeurASP program illustration showing two numeral inputs, a neural network whose
output feeds into an ASP program.

In Figure 1, even if the neural network originally had assigned a higher probability to numq(r) =
8, the ASP program will eliminate that possibility in the answer sets where num;(I) = 1.



Kubok-16 puzzle

23 25 53 35
0,1 0,2 0,3 0,4
T 34 56 78
1,0 1,1 1,2 13 1,4
29 )| 12 11
970 1 12 13 14 15 16 17 18
2,0 2,1 2.2 213 2.4
23 3|13
19 20 21 22 23 24 25 26 27 28
3,0 3,1 3.2 33 3.4
2 o | 1
29 30 31 32 33 34 35 36 37 38
4,0 4,1 42 43 4.4
)| 8 15
39 40 41 42 43 44 45 46 47 48

Figure 2: A Kubok-16 puzzle instance with X,Y co-ordinates added to it. The 48 output attributes
are also numbered from 1 to 48.

nn(kubok, img, 48, {blank,0,1,2,3,4,5,6,7,8,9}).



Kubok-16 example continued

nn(kubok,img, 48, {blank,0,1,2,3,4,5,6,7,8,9}).

where, kubok is the name of the neural network, img refers to an input, 48 denotes the number
of attributes, and {blank,0,1,2,3,4,5,6,7,8,9} refers to the 11 values the attributes can take. The
neural network Mp,por, Will then define a probability function denoted by Mpypor(img)[i, v] such
that

for 1 <14 < 48, Zvé{blank,O,...,Q} Myupor (img)[i,v] = 1.

The above neural atom would be translated to the following ASP rules.
{kubok(X,blank); kubok(X,0);...kubok(X,9)} =1+ 1<= X, X <=48.
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ASP Code for Kubok-16

*  kubok(X,0) :- kubok(X,blank). % blank is viewed as 0.

* val(X)Y,2) :- kubok(M,U), kubok(N,V), Z=10*U + V, N =10"X+2"Y, M = N-1, U!l= blank, V !=blank.
% This rule computes the number in the various X,Y co-ordinates based on the numeral
corresponding to each of the 48 attributes of the image.

* num4(1..4). num16(1..16).

* {valX,Y,2): Z <=16, num16(2)} = 1 :- X <=4, Y <=4, num4(X), num4(Y). % This choice rule states that
each square in the 4 X 4 grid should have a unique number between 1 to 16.

ivaI(X,Y,Z): X <=4,Y <=4, num4(X), num4(Y)} = 1 :- Z <=16, num16(Z). % This choice rule states that
or any number between 1 to 16 exactly one square in the 4 X 4 grid will have that number.

result(X,0, S) :- S = #sum{ Z : val(X,Y,2) , num4(Y) }, num4(X).

result(0,Y, S) ;- S = #sum{ Z : val(X,Y,Z) , num4(X) }, num4(Y). % The above two rules compute the sum
of the numbers in each row and column

* :-result(0,Y,2), val(0,Y,Z2), Z = ZZ.

- result(X,0,2), val(X,0,Z2), Z |= ZZ. % The above two rules filter out the possible assignments where
the computed row or the column sum does not match with what is given.

35



What’s the benefit of NeurASP?



Higher Accuracy with Less Data

1. Perception and reasoning are separated so as to achieve higher accuracy
with less data. (Neuro-symbolic Concept Learner by Mao et al. 2019)

Number of Accuracy
Method Input Sudokq I?ata for of Solution
Training
Convolutional
NeurASP Neural Network Image of o5 100%
+ Sudoku
ASP
Text
Convolutional | Representation - 0
(Park 2018) Neural Network of Sudoku 1 Million 70.0%
(9%X9 numbers)
Text
(Palm et al. Graph Representation 0
2018) Neural Network |  of Sudoku 180,000 96.6%
(9X9 numbers)

37 Based on slides by Zhun Yang



Prune out Perception Errors

2. Reasoning can help identify perception mistakes that violate semantic
constraints, which in turn can make perception more robust.

/v.s.1
5|3 7
6 ' PE N S P N 1
9|8 6
8 6 3
8 3
7 2 6
6 2|8
al1|o
8 7

Based on slides by Zhun Yang
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Prune out Perception Errors

Based on slides by Zhun Yang

2. Reasoning can help identify perception mistakes that violate semantic
constraints, which in turn can make perception more robust.

Table 1: Sudoku: Accuracy on Test Data

Num of Accigentify of Accigentify of Accidentify of Accgpp of
Train Data M gentify NeurASP w/ NeurASP w/ NeurASP w/
T sudoku \T Hsudoky Msydoku

15
17
19
21
23
25

15%
31%
72%
85%
93%
100%

49%
62%
90%
95%
99%
100%

71%
80%
95%
98%
100%
100%

71%
80%
95%
98%
100%
100%

Intuitively, 14,40k, \7 only checks whether the identified
numbers (by neural network M;gent:7,) satisfy the three con-
straints (the last three rules of Il 4okw), While Ilgy, g0k, fur-
ther checks whether there exists a solution given the iden-
tified numbers.

{a(R,C,1); ..; a(R,C,9)}=1 « iden®wifyi(img)=empty, R=i/9, C=1i\09.



Elaboration Tolerant

3. NeurASP can be easily applied to elaborations of a task.

Offset Sudoku

3ﬁ; ‘54
e g B

[Offset Sudoku] No number repeats at the same relative po-
sition in 3*3 boxes

:- a(R1,C1,N), a(R2,C2,N), RI\3 = R2\3,
C1\3 = C2\3, Rl != R2, C1 != C2.

[Anti-knight Sudoku] No number repeats at a knight move
:- a(R1,C1,N), a(R2,C2,N), |R1-R2|+|C1-C2|=3.

[Sudoku-X] No number repeats at the diagonals

:- a(R1,C1,N), a(R2,C2,N), R1I=Cl, R2=C2, R1!=R2.
:- a(R1,C1,N), a(R2,C2,N), RI1I+C1=8, R2+C2=8, R1!=R2.

Rased on slides by Zhun Yang



Based on slides by Zhun Yang

Context Relational Classification

4. NeurASP extends classification to context relational classification

q By default, we believe person is smaller than car.

* On the other hand, there are some exceptions.
~smaller (B,B’) « box(B,X1,Y1,X2,Y2), box(B',X1',Y1',X2",Y2"),
Yo < Y2!, |[Xi—Xe|x|Yi—-Yz| > |Xi1'-X2'|x|Y1'-Y2"].

\\7 toy (B’) « label (B)=person, labelsB’)=car, smaller (B’,B).

~

smaller (B,B’) « label (B)=person, label (B’")=car, not ~smaller (B,B’).

J




Based on slides by Zhun Yang

Semantic Regularizer

5. A neural network can be trained together with rules so that it not only learns
from implicit correlations from the data but also learns from explicit complex

semantic constraints expressed by ASP rules.
i )

i ® i ®
Multi-Layer Perception Multi-Layer Perception

(Cross-Entropy) 44 (NeurASP)




Semantic Regularizer

5. A neural network can be trained together with rules so that it not only learns
from implicit correlations from the data but also learns from explicit complex
semantic constraints expressed by ASP rules.

% [nr] 1. No removed edges should be predicted
:- sp(X,g,true), removed(X) . Table 2: Shortest Path: Accuracy on Test Data: columns de-

note MLPs trained with different rules; each row represents

2. Prediction must form a simple path, i.e., o s 5 .
. 2l Segree of each mode must be eithes 0 oz 5 | the percentage of predictions that satisfy the constraints

:— X=0..15, #count{Y: sp(X,¥)} = 1. Predictions MLP Only | MLP MLP MLP
:— X=0..15, #count{Y: sp(X,Y)} >= 3. Satisfying (p) (p_r-o) (p_r-o_nr)
% [r] 3. Every 2 nodes in the prediction must be P 28.3% 96.6% 100% 30.1%
o remchable r 88.5% | 100% | 100% | 87.3%
reachable(X,Y) :- sp(X,Y). nr 32.9% 36.3% | 45.7% 70.5%
reachable (X,Y) :—- reachable(X,Z), sp(Z,Y). p-r 28.3% 96.6% 100% 30.1%
= sp(XA), sp(Y,B), not reachable(X,¥). p-r-o-nr 23.0% | 332% | 45.7% | 24.2%
label (ground truth) 22.4% 289% | 40.1% 22.7%

% [o] 4. Predicted path should contain least edges

i~ sp(X,qg,true) . [1, X]

46 Based on slides by Zhun Yang



Challenges of NeurASP

* Training with NeurASP takes much more time than pure NN training due to

exact inference — NeurASP uses clingo to ground the whole program and
enumerate all stable models.

* Scalability can be addressed using approximate inference instead of exact
inference

* The interface between the neural part and the ASP part needs to be manually
developed

* Codes for NeurASP and experiments are available at

* https://qgithub.com/azreasoners/NeurASP

Based on slides by Zhun Yang
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Follow-up works by others

Neural-Symbolic Integration: A Compositional Perspective*

Efthymia Tsamoura', Timothy Hospedales', Loizos Michael?

! Samsung AI Research
2 Open University of Cyprus &
Research Center on Interactive Media,
Smart Systems, and Emerging Technologies
efi.tsamoura@samsung.com, t.hospedales @samsung.com, loizos @ouc.ac.cy

Abstract

Despite significant progress in the development of neural-
symbolic frameworks, the question of how to integrate a neu-
ral and a symbolic system in a compositional manner remains
open. Our work seeks to fill this gap by treating these two
systems as black boxes to be integrated as modules into a sin-
gle architecture, without making assumptions on their inter-
nal structure and semantics. Instead, we expect only that each
module exposes certain methods for accessing the functions
that the module implements: the symbolic module exposes
a deduction method for computing the function’s output on a
given input, and an abduction method for computing the func-
tion’s inputs for a given output; the neural module exposes a
deduction method for computing the function’s output on a
given input, and an induction method for updating the func-
tion given input-output training instances. We are, then, able
to show that a symbolic module — with any choice for syntax
and semantics, as long as the deduction and abduction meth-
ods are exposed — can be cleanly integrated with a neural
module, and facilitate the latter’s efficient training, achieving
empirical performance that exceeds that of previous work.
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Parisotto et al. 2017), and open question answering (Sun
et al. 2018) settings. In these cases, the training of the neu-
ral module is regulated by the logic theory (and its integrity
constraints or other constructs), which is far from straight-
forward since logical inference cannot be, in general, cap-
tured via a differentiable function.

To accommodate the integration of neural modules with
logical theories, the majority of neural-symbolic frame-
works restrict the type of the theories (e.g., to non-recursive
or acyclic propositional ones), and they either translate them
into neural networks (d’Avila Garcez, Broda, and Gabbay
2002; Holldobler, Storr, and Kalinke 1999; Towell and Shav-
lik 1994), or they replace logical computations by differen-
tiable functions (Bo$njak et al. 2017; Gaunt et al. 2017). A
second line of work abandons the use of classical logic al-
together and adopts theories whose interpretations take con-
tinuous values, such as fuzzy logic (Donadello, Serafini, and
d’Avila Garcez 2017; Marra et al. 2019; Serafini and d’ Avila
Garcez 2016; Sourek et al. 2015; van Krieken, Acar, and
van Harmelen 2019), or probabilistic logic (Manhaeve et al.
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Additional Applications of
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Visual Question Answering (Yi et al. 2018)

ID Size Shape Material Color X y z

1 small cube metal cyan -1.5 -0.4 0.35
2 small sphere rubber cyan -1.3 0.3 0.35
3 small sphere metal cyan -0.9 -0.1 0.35
4 large sphere rubber yellow -0.4 0.5 0.7
5 large cube metal green 0.1 -0.9 0.7
6 large cube rubber yellow 0.7 0.8 0.7
7 large cube rubber purple 0.9 -0.42 0.7
8 large sphere rubber purple 1.1 0.45 0.7

Structural scene representation of the CLEVR image
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Answering Compositional Questions
(Gupta et al. ICLR 2019)

Suppose “Who kicked the longest field goal in the second quarter” (Q) is asked with
respect to a paragraph P.

To answer this question, the question is translated to the following program using a
neural module:

relocate(Q,find-max-num(filter(Q,P))).
Symbolic Program Executor executes the above:
* first filter(Q,P) is executed to find a span P1 of P relevant to the question Q.

* Next when find-max-num(P1) is executed a span P2 of P1 is identified that is
associated with the largest number.

* Then .reloc.afte(Q,PZ?]is executed to find who kicked the field goal, which earlier had
been identified as the longest.
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Declarative Reasoning over Text
(Mitra et al. AAAI 2019)

Consider the following question asked with respect to a paragraph P; about the life cycle of a
frog: What best indicates that a frog has reached the adult stage? (A) When it has lungs (B) When
its tail has been absorbed by the body. Consider the word “indicates” in the question. Intuitively,
while an adult frog satisfies both (a) has lungs, and (b) its tail has been absorbed by the body, only
the later “indicates” that the frog has reached the adult stage as a froglet also satisfies the property
of having longs. Thus, a property indicates a particular life stage if that property is unique to that
life stage. This can be expressed in the declarative language of Answer Set Programming by the
following rule:

indicator(0, S, P) :- organism(0), stage(S), property(P), has(0,S,P),
#count{ has(0,S’,P) : stage(S’)} = 1.

Some of the other terms that are defined using declarative rules: “middle”, and “be-
tween” used in the questions “What is the middle stage in a frog’s life”, and “What is a stage that
comes between tadpole and adult in the life cycle of a from”.
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Problem Solving - Grid Puzzles
Mitra & Baral, EMNLP 2015

* Answer Set Programming (ASP) has been used to formulate various problem solving

tasks such as planning, constraint satisfaction problems (such as Nqueens), games (such
as Sudoku, Kubok-16), and combinatorial grid puzzles

* The clues of the Zebra puzzle are:
* The Englishman lives in the red house.
* The Spaniard owns the dog.
* Coffee is drunk in the green house.

* Who owns the zebra?

Problem solving tasks given in text or images can be converted to formal inputs using a

neural module that can then use ASP (specific to a domain, but generic to all problems in
that domain) to solve the problem.
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Mathematical Reasoning

Disentangle language understanding from mathematical reasoning; Mishra et al. EMNLP 2022

* Translate Math problems to code in a programming language using a neural
approach

* Symbolically execute the code
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Neuro-symbolic Reinforcement Learning

RL, Deep RL and need for symbolic reasoning

Reinforcement Iearning (RL) is about learning what action to take in a state in an environment so as to
maximize the expected cumulative reward.

The dynamics of the environment is modeled as a Markov decision process_fMDP) with a set of states S, a
set of actions A, a probabilistic transition function P that defines the probability of fransitioning from one
state to another due to an action, and a reward function associated with each transition.

The goal of the reinforcement learning algorithm is then to learn a policy of what action to take in which
state so as to maximize the expected cumulative reward.

Deep RL is often used when the dimension of a state becomes large, such as when the state is expressed

?r? a scre%nshot of a game or are images of a camera. In case of a game, the game score is often used as
e reward.

Symbolic reasoning is useful
* Often there are additional conditions: safety, verifiability

* Need for explainability at some level: use of rule learning, ILP
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Neuro-symbolic Reinforcement Learning

Use of symbolic reasoning - Safety via shielding; formal verification

* Safety via shielding: safety during learning or execution phases
* Enforcing properties expressed in temporal logic
* Alshiekh et al. 2017: A reactive system called a shield is synthesized (a-priori)

* First way: the shield acts each time the learning agent is about to make a decision
and provides a list of safe actions.

* Second way: The shield monitors the actions from the learner and corrects them only
if the chosen action causes a violation of the specification.

* Anderson et al. fREVEL): allows learning over continuous state and action spaces,
supports gpartla ly) neural policy representations and contemJoorary pohcx gradient
methods for learning, while also ensuring that every interme tha
constructs during exploration is safe on worst-case inputs.

iate policy that the learner

* Unlike in prior work, the monitor and the shield are updated as learning progresses.



Neuro-symbolic Reinforcement Learning

Use of symbolic reasoning - Interpretability via rule learning, ILP

* In hierarchical RL: higher level may use rule learning, ILP for better interpretability, while
lower level uses Deep RL

* Mitchener et al. 2022 learned metapolicies using Inductive Answer Set Learning and
learned meta policies such as the following in the Animal Al environment.

* If aramp is available then climb it.

If the agent is on a platform and there is lava near the goal, then observe the arena
dynamics.

If there are more goals on one side of a platform you are on, then go to that side.

If there’s no lava, collect multi-goals.

If there’s no lava around the goal and the goal is not on a platform go get it.

* Explainable (logical) rules can also be learned in a neural framework
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