
About 40% of the slides in this deck are based on slides by Zhun Yang.

NeurASP = 
Neural Network + ASP
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Some neuro-symbolic approaches
• We have some knowledge about the domain that we want to incorporate to our neural 

learning and reasoning framework. How do we do it?
• Distillation based approach
• Compile into the loss function
• Have a separate symbolic reasoning and filtering layer

• Neural networks that generate code (or a collection of structured facts) which then gets 
implemented by a program lead to another kind of neuro-symbolic integration.

• Neural models where each neuron has symbolic meaning and the overall network can 
learn various aspects from noisy data
• capture logical contradiction
• learn explainable rules

• Neuro-symbolic approaches in planning and acting domains: 
• partially neural reinforcement learning (RL) framework for the continuous state and 

action space domain
• neuro-symbolic architecture that learns state transitions from images
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NeurASP

Neural Network

raw and big data
scalability

modeling capability
robustness against faults

ASP

domain knowledge
data efficiency
interpretability

provable correctness
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Why Answer Set Programs?
• Answer Set Programming (ASP) is a logic programming paradigm.

• combinatorial search

• knowledge intensive tasks

• ASP has well-developed foundations, efficient reasoning systems, and a 
methodology of use tested on a number of industrial applications.

• ASP supports a rich set of KR constructs that allow for convenient 
representation of complex knowledge.

• Aggregates • Choices rules • Optimization rules• Default

8

Based on slides by Zhun Yang



Answer Set Programs – a quick overview
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ASP Examples
The ancestor program

• Using the above program we not only conclude the facts, but also conclude: 
anc(a,b), anc(b,c), anc(c,d), and(e,f), anc(a,c), anc(b,d), and anc(a,d).
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A key ASP construct – The default “not”
Expressing normal properties: Normally crows are black
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Semantics of Answer Set Programs
Examples with unique answer sets

• Programs without not: The unique least model. For the following program, it is 
{ }.

• Some programs with not

• {a} is the only answer set of the program:

• {q} is the only answer set of the program: 
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Semantics of Answer Set Programs
Examples with multiple answer sets (also called as stable models)

• The following program has two answer sets: {a, p} and {b, p}
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ASP Solvers introduce useful syntactic sugar
Choice rules

• More generally:

• What does this fact mean: 
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Example Answer Set Program

{ digit(d1)=0 ; … ; digit(d1)=9 }=1.

{ digit(d2)=0 ; … ; digit(d2)=9 }=1.
addition(A, B, N) ← digit(A)=N1, 

digit(B)=N2, 
N = N1+N2.

ASP Program 𝚷 for Digit Addition

Example Stable Model
M = {digit(d1)=3, digit(d2)=0, 

addition(d1,d2,3)}

choice rules
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Graph Coloring Using ASP
Can the graph be colored by n colors so that no two adjacent vertices have the same color?
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NeurASP = NN + ASP, but why?
• NeurASP allows one to train a NN under weak supervision.

• Perception and reasoning are separated so as to achieve higher accuracy 
with less data.

• Reasoning can help identify perception mistakes that violate semantic 
constraints, which in turn can make perception more robust.

• NeurASP is more elaboration tolerant on visual tasks.

• NeurASP extends classification to context relational classification

• A neural network can be trained together with rules so that it not only learns 
from implicit correlations from the data but also learns from explicit complex 
semantic constraints expressed by ASP rules.
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How does NeurASP work?
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Links neural network outputs to atoms in an ASP program.

Neural Atom

{ digit(d1)=0 ; … ; digit(d1)=9 }=1.
{ digit(d2)=0 ; … ; digit(d2)=9 }=1.
addition(A, B, N) ← digit(A)=N1, 

digit(B)=N2, 
N = N1 + N2.

p1,0
…
p1,9

p2,0
…
p2,9

P𝚷(addition(d1,d2,3))
neural 
networ

k
d1

d2

We use neural network digit to classify the image d1, and
the output p1,i for i in {0, …, 9} defines the probability of digit(d1)=i.

nn( digit, d1 ,1, {0,1,2,3,4,5,6,7,8,9} )

ASP Program 𝚷 for Digit Addition

digit

neural atom:
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NeurASP notations
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NeurASP – Sudoku
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NeurASP Syntax
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Infer the probabilities of stable models and formulas.

NeurASP Inference

{ digit(d1)=0 ; … ; digit(d1)=9 }=1.
{ digit(d2)=0 ; … ; digit(d2)=9 }=1.
addition(A, B, N) ← digit(A)=N1, 

digit(B)=N2, 
N = N1 + N2.

p1,0
…
p1,9

p2,0
…
p2,9

P𝚷(addition(d1,d2,3))
neural 
networ

k
d1

d2
digit

• Suppose

‣ P𝚷(Mi,j) = p1,i ⨉ p2,j (for i, j in {0, …, 9})

‣ P𝚷(addition(d1,d2,3)) = P𝚷(M0,3) + P𝚷(M1,2) + P𝚷(M2,1) + P𝚷(M3,0)

Mi,j = {digit(d1)=i, digit(d2)=j, addition(d1,d2,i+j)}
p1,i p2,j

trained ASP Program 𝚷 for Digit Addition
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Semantics of NeurASP — Stable Model
The semantics of NeurASP defines a stable model and its probability orienting from the NN outputs.

For each NeurASP program 𝚷, we obtain its ASP counterpart 𝚷’ by replacing each neural atom

nn(m, t, e, {v1, …, vn})
with the set of choice rules

{ mi(t)=v1 ; … ; mi(t)=vn }=1 for i ∈ {1, …, e}.

• The stable models of 𝚷 are the stable models of 𝚷’.

EX.
Let Mdigit be a neural network that classifies an MNIST digit image. Consider the NeurASP program 𝚷 below.

nn( digit,d,1,{0,1,2,3,4,5,6,7,8,9})
Its ASP counterpart 𝚷’ is 

{ digit1(d)=0 ; … ; digit1(d)=9 }=1
Thus the stable models of 𝚷 are the 10 stable models of 𝚷’ below.

{digit1(d)=0}   {digit1(d)=1}  …  {digit1(d)=9}
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Semantics of NeurASP — Probability
Recall that we turn each neural atom     nn(m, t, e, {v1, …, vn}) into the set of choice rules

{ mi(t)=v1 ; … ; mi(t)=vn }=1 for i ∈ {1, …, e}.
• Let 𝜎nn denote the set of atoms mi(t)=vj obtained from neural atoms as described above.
• With the input tensor (identified by) t, we assume neural network M (identified by m) outputs a matrix in ℝe⨉n. 
The n numbers in the i-th row define the probability distribution of the following n atoms.

mi(t)=v1 , mi(t)=v2 , … , mi(t)=vn

• The probability of a stable model I of 𝚷 is the product of the probabilities of all atoms in I ⋂ 𝜎nn.

EX.                                                           Consider the NeurASP program 𝚷 below.
nn( digit, d, 1, {0,1,2,3,4,5,6,7,8,9} )

Suppose the output of M given input tensor d is [0, 0, 0.3, 0, 0, 0, 0, 0.6, 0, 0.1], then 
the probability of I0={digit1(d)=0} is P𝚷(I0) = 0

…
the probability of I9={digit1(d)=9} is P𝚷(I9) = 0.1
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Back-propagate gradients to the neural network through the chain rule.

NeurASP Learning

{ digit(d1)=0 ; … ; digit(d1)=9 }=1.
{ digit(d2)=0 ; … ; digit(d2)=9 }=1.
addition(A, B, N) ← digit(A)=N1, 

digit(B)=N2, 
N = N1 + N2.

p1,0
…
p1,9

p2,0
…
p2,9

neural 
network

d1

d2
digit

addition(d1,d2,3)

data instance

ASP Program 𝚷 for Digit Addition
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Gradients Computation

Given 
• a NeurASP program Π
• an observation O, 
for each NN output p for atom 
c=v, we

1. find all stable models I of Π⋃O
2. compute the probability PΠ(I)
3. use Prop 1 to compute
4. use the chain rule to further 

backward to NN parameters
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Example NeurASP Program: Sudoku

img

• Assign one number to each cell i for i ∈ {1, …, 81}.
nn(identify, img, 81,{empty,1,2,3,4,5,6,7,8,9}).

a(R,C,N) ← identifyi(img)=N, R=i/9, C=i\9, N≠empty.

{a(R,C,1); …; a(R,C,9)}=1 ← identifyi(img)=empty, R=i/9, C=i\9.

• Use NN identify to identify the digits in each of the 81 grid cells.

• No number repeats in the same row, column, and 3⨉3 box.
← a(R,C1,N), a(R,C2,N), C1≠C2.

← a(R1,C,N), a(R2,C,N), R1≠R2.

← a(R1,C1,N), a(R2,C2,N), R1≠R2, C1≠C2, ((R1/3)⨉3+C1/3) = ((R2/3)⨉3+C2/3).

Task: given an image of Sudoku board, predict the solution.
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Reading a number between 1 to 16
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Kubok-16 puzzle
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Kubok-16 example continued
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ASP Code for Kubok-16
• kubok(X,0) :- kubok(X,blank). % blank is viewed as 0.

• val(X,Y,Z) :- kubok(M,U), kubok(N,V), Z = 10*U + V,  N = 10*X+2*Y, M = N-1, U!= blank, V !=blank.     
% This rule computes the number in the various X,Y co-ordinates based on the numeral 
corresponding to each of the 48 attributes of the image.

• num4(1..4).  num16(1..16).

• {val(X,Y,Z): Z <=16, num16(Z)} = 1 :- X <=4, Y <=4, num4(X), num4(Y). % This choice rule states that 
each square in the 4 X 4 grid  should have a unique number between 1 to 16.

• {val(X,Y,Z): X <=4, Y <=4, num4(X), num4(Y)} = 1 :- Z <=16, num16(Z). % This choice rule states that  
for any number between 1 to 16 exactly one square in the  4 X 4 grid will have that number.

• result(X,0, S) :- S = #sum{ Z : val(X,Y,Z) , num4(Y) }, num4(X).

result(0,Y, S) :- S = #sum{ Z : val(X,Y,Z) , num4(X) }, num4(Y). % The above two rules compute the sum 
of the numbers in  each row and column

• :- result(0,Y,Z), val(0,Y,ZZ), Z != ZZ.

:- result(X,0,Z), val(X,0,ZZ), Z != ZZ. % The above two rules filter out the possible assignments where 
the computed row or the column sum does not match with what is given.
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What’s the benefit of NeurASP?
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Higher Accuracy with Less Data
1. Perception and reasoning are separated so as to achieve higher accuracy 

with less data. (Neuro-symbolic Concept Learner by Mao et al. 2019) 

Method Input
Number of 

Sudoku Data for 
Training

Accuracy
of Solution

NeurASP
Convolutional 

Neural Network
+

ASP

Image of 
Sudoku 25 100%

(Park 2018) Convolutional 
Neural Network

Text
Representation 

of Sudoku
(9⨉9 numbers)

1 Million 70.0%

(Palm et al. 
2018)

Graph 
Neural Network

Text
Representation 

of Sudoku
(9⨉9 numbers)

180,000 96.6%
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Prune out Perception Errors
2. Reasoning can help identify perception mistakes that violate semantic 

constraints, which in turn can make perception more robust.

7 v.s. 1

38
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Prune out Perception Errors
2. Reasoning can help identify perception mistakes that violate semantic 

constraints, which in turn can make perception more robust.

{a(R,C,1); …; a(R,C,9)}=1 ← identifyi(img)=empty, R=i/9, C=i\9.39
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Elaboration Tolerant
3. NeurASP can be easily applied to elaborations of a task.

Offset Sudoku
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Context Relational Classification
4. NeurASP extends classification to context relational classification

Q: What are the cars and toy-cars in these images?

• By default, we believe person is smaller than car.
smaller(B,B’) ← label(B)=person, label(B’)=car, not ∼smaller(B,B’).

• On the other hand, there are some exceptions.
∼smaller(B,B’) ← box(B,X1,Y1,X2,Y2), box(B′,X1′,Y1′,X2′,Y2′),

Y2 ≤ Y2′, |X1−X2|×|Y1−Y2| > |X1′−X2′|×|Y1′−Y2′|.

toy(B’) ← label(B)=person, label(B’)=car, smaller(B’,B).43
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Semantic Regularizer
5. A neural network can be trained together with rules so that it not only learns 
from implicit correlations from the data but also learns from explicit complex 
semantic constraints expressed by ASP rules.

Multi-Layer Perception
(Cross-Entropy)

Multi-Layer Perception
(NeurASP)44

Based on slides by Zhun Yang



Semantic Regularizer
5. A neural network can be trained together with rules so that it not only learns 
from implicit correlations from the data but also learns from explicit complex 
semantic constraints expressed by ASP rules.
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Challenges of NeurASP

• Training with NeurASP takes much more time than pure NN training due to 
exact inference — NeurASP uses clingo to ground the whole program and 
enumerate all stable models.

• Scalability can be addressed using approximate inference instead of exact 
inference 

• The interface between the neural part and the ASP part needs to be manually  
developed

• Codes for NeurASP and experiments are available at

• https://github.com/azreasoners/NeurASP
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Follow-up works by others 
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Additional Applications of 
Neuro-Symbolic Reasoning
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Visual Question Answering (Yi et al. 2018)
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Question in Natural Language

Program 
Executor



Answering Compositional Questions
(Gupta et al. ICLR 2019)

• Suppose “Who kicked the longest field goal in the second quarter” (Q) is asked with 
respect to a paragraph P. 

• To answer this question, the question is translated to the following program using a 
neural module:  

relocate(Q,find-max-num(filter(Q,P))). 

• Symbolic Program Executor executes the above:

• first filter(Q,P) is executed to find a span P1 of P relevant to the question Q.

• Next when find-max-num(P1) is executed a span P2 of P1 is identified that is 
associated with the largest number. 

• Then relocate(Q,P2) is executed to find who kicked the field goal, which earlier had 
been identified as the longest. 
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Declarative Reasoning over Text
(Mitra et al. AAAI 2019)

52



Problem Solving – Grid Puzzles
Mitra & Baral, EMNLP 2015

• Answer Set Programming (ASP) has been used to formulate various problem solving 
tasks such as planning, constraint satisfaction problems (such as Nqueens), games (such 
as Sudoku, Kubok-16), and combinatorial grid puzzles

• The clues of the Zebra puzzle are:

• The Englishman lives in the red house.

• The Spaniard owns the dog.

• Coffee is drunk in the green house.   …

• Who owns the zebra?

• Problem solving tasks given in text or images can be converted to formal inputs using a 
neural module that can then use ASP (specific to a domain, but generic to all problems in 
that domain) to solve the problem.
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Mathematical Reasoning
Disentangle language understanding from mathematical reasoning; Mishra et al. EMNLP 2022

• Translate Math problems to code in a programming language using a neural 
approach

• Symbolically execute the code 
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Neuro-symbolic Reinforcement Learning
RL, Deep RL and need for symbolic reasoning

• Reinforcement learning (RL) is about learning what action to take in a state in an environment so as to 
maximize the expected cumulative reward. 

• The dynamics of the environment is modeled as a Markov decision process (MDP), with a set of states S, a 
set of actions A, a probabilistic transition function P that defines the probability of transitioning from one 
state to another due to an action, and a reward function associated with each transition. 

• The goal of the reinforcement learning algorithm is then to learn a policy of what action to take in which 
state so as to maximize the expected cumulative reward.

• Deep RL is often used when the dimension of a state becomes large, such as when the state is expressed 
as a screenshot of a game or are images of a camera. In case of a game, the game score is often used as 
the reward. 

• Symbolic reasoning is useful

• Often there are additional conditions: safety, verifiability

• Need for explainability at some level: use of  rule learning, ILP
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Neuro-symbolic Reinforcement Learning
Use of symbolic reasoning - Safety via shielding; formal verification

• Safety via shielding: safety during learning or execution phases 

• Enforcing properties expressed in temporal logic

• Alshiekh et al. 2017: A reactive system called a shield is synthesized (a-priori)

• First way: the shield acts each time the learning agent is about to make a decision 
and provides a list of safe actions. 

• Second way: The shield monitors the actions from the learner and corrects them only 
if the chosen action causes a violation of the specification. 

• Anderson et al. (REVEL): allows learning over continuous state and action spaces, 
supports (partially) neural policy representations and contemporary policy gradient 
methods for learning, while also ensuring that every intermediate policy that the learner 
constructs during exploration is safe on worst-case inputs.

• Unlike in prior work, the monitor and the shield are updated as learning progresses.
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Neuro-symbolic Reinforcement Learning
Use of symbolic reasoning – Interpretability via rule learning, ILP 

• In hierarchical  RL: higher level may use rule learning, ILP for better interpretability, while 
lower level uses Deep RL

• Mitchener et al. 2022 learned metapolicies using Inductive Answer Set Learning and 
learned meta policies such as the following in the Animal AI environment.

• If a ramp is available then climb it.

• If the agent is on a platform and there is lava near the goal, then observe the arena 
dynamics.

• If there are more goals on one side of a platform you are on, then go to that side.

• If there’s no lava, collect multi-goals.

• If there’s no lava around the goal and the goal is not on a platform go get it.

• Explainable (logical) rules can also be learned in a neural framework
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