Supplement to Chapter 10:
Neuro Symbolic Reasoning and Sequential
Decision Making

Supplment to Chapter 10 from Neuro Symbolic Reasoning and Learning - Current
Advances and Future Directions

Deep Symbolic Regression

In this supplement, we provide a diagramthat outlines the overall approach to DSR
in Figure 0.1. An example expression tree for the expression % — ¢* is shown in
Figure 0.2. we briefly describe a very recent transformer-based approach to this

problem introduced by Meta Al at NeurIPS [4].

Update RNN parameters

[J []
s —
‘ Generate distribution of expressions

with an RNN
Compute gradient using top

epsilon expressions via “risk-
seeking” reward function

VB]risk(e; E)

Evaluate reward associated with
expressions based on NRMSE to
identify top epsilon expressions

11
~ j;lzi(yi - X)Y

Fig. 0.1 Overview of deep symbolic regression.

Fig. 0.2 Example expression tree.

Symbolic Regression with Transformers:

An Alternative to Deep Symbolic Regression.

At the time of this writing (2022) the transformer architecture [20] has largely
supplanted RNN’s in many applications which may lead some to wonder if
DSR can be improved upon by leveraging this powerful architecture. Meta
Al has recently introduced such an approach [4] and it is worth noting, at
least at a high level some of the design decisions. Perhaps the key difference
is that [4] uses a more traditional supervised paradigm, however a “sample”
consisting to individual symbolic regression problems. In other words, their
model is trained on three million (X,y) pairs where X is an d X n matrix.
As this leads to each sample being of size O(nd), an embedding is used to
reduce the input size. The transformer uses 16 attention heads, an embedding
dimension of 512 and 86 million parameters to produce a model. The model
is trained with generated data, relying on established techniques in symbolic
regression (resulting in three million training samples). The result is a model
that accepts an input matrix X as described earlier and returns an expression
- functioning much like a language model. This approach also is reported to
produce state-of-the-art performance and has the benefit of high speed after
training.

Deep Symbolic Policy Learning

In Figure 0.3 we illustrate this in an example on the Lunar Lander.

Other Considerations and Empirical Evaluation. As with DSR, DSP uses a
constant optimization process as an additional refinement step. Empirical studies
in [9] examined results both with and without constant optimization. An additional
hierarchical entropy regularization term was also shown to improve results (note
this regularization was also used in DSR). Another empirical improvement was
the utilization of a soft prior for the length of an expression, as it was found in
experiments that when a maximum length was used on the expression length, nearly
all expressions had a length equal to the threshold. Empirical results on a suite of

1. Black box anchor policy learned for all action dimensions

Black box model holds place
Black box model learned that maximizes eval of second dimension

W = arg maxyseval(¥')

2 ic poli ion dimension 1 s learned

Reward function for single dimension; uses black
box model for the second dimension.
R(r) = eval((z, ()
Pick symbolic expression that maximizes reward Symbolic expression holds
f, = arg max,(R()) place of first dimension
o1

Selected expression in Lunar Lander example S —
f1(S) = —10s; + sin(s3) — 145, — 1.99 Reward function for single dimension; uses learned
symbolic expression for the first dimension.
R(7) = eval(,r))
; Pick symbolic expression that maximizes reward
a f> = argmax.(R(7))
€ - - ,_. i 4 Selected expression in I.Sunar Lander example
oy ped f2(8) = =579 —~
Va ol

Returns fully symbolic policy
across all dimensions

Final Symbolic Policy

Notes
eval(P) Evaluates multi-dimensional action policy P £i(S) = —10s, + sin(s3) — 145, — 1.99

(P,,P,) Eachaction dimension of policy P £>(8) = =5.79 = S‘S
6~ 53

Fig. 0.3 DSP Learning using a black box model to support multiple action dimensions.

tests from OpenAl Gym (including the Lunar Lander used in the figures of this
chapter) showed that DSP consistently provided near state-of-the-art results while
providing for a more compact and explainable model.

Verifying Neural-based Models

Signal Temporal Logic (STL): A Brief Summary.

Signal Temporal Logic (STL) assumes an underlying set of signals associated
with a set of m signals denoted X that underlie the predicates of the logic.
A “signal predicate,” y is an atomic statement that is true when f(x) < 0
for some x € X and function x. A formula is defined based on the following
grammar.

eu=p || @ A" 1@ VO [0apy@ | Owpe | @Uape (0.1)

Aside from the temporal operators (¢, O, U), we can view the remainder of
the operations as being treated with the same semantics as propositional logic
(see Chapter ??) with the addition that y is defined in terms of the a function
associated with the value of an underlying signal. Note that we use the variant
of STL described iin [10] which assumes that each signal predicate is associ-
ated with a single signal of X where other treatments more resemble LTN’s
grounding of symbols (Chapter ??) where the symbol is defined in terms of
a function over all signals. We can view the semantic structure as consisting

of a sequence of worlds over many timesteps. Likewise, each signal x € X
has a value associated with each timestep. As such, the temporal operators
“eventually,” “always,” and “until” are temporal operators (¢, 0, U) allow for
specifying formulas over multiple periods of time.

STL allows for the expression of various properties. We list several below.
These can be used to express safety properties, enforce resource constraints,
or account for physical laws.

* Reasonable range. Values of certain signals should always be within a
specified range.

» Consecutive change. The change in a value within a certain time period
should be withing a certain threshold.

e Temporal Correlation. Certain correlations known a-priori can be captured
by such a constraint.

* Existence. Enforces that at a signal will eventually satisfy a certain property.

0.0.1 LNN Shielding and Guiding

The intuition behind the trace generation in STLNet can be viewed as a type of re-
finement if neural output. We have seen similar ideas in DSP learning (e.g., constant
optimization, replacing black-box action dimensions). A similar type of refinement
based on logical constraints for a reinforcement learning trained agent has been de-
scribed in [7] where they enforce constraints using logical neural networks (LNN’s).
In that work, they introduce the concepts of “LNN Shielding” and “LNN Guiding.”
Here, a black box LSTM neural model is used to train a reinforcement learning
agent and its actions are modified based on the deduction process on a logic program
resulintg from a trained LNN !

We note that the idea of shielding and guarding will likely work with other
paradigms other than LNN - as the authors are essentially assuming the existence
of a logic program. The work does use the fact that LNN’s rely on a logic that
uses intervals over reals. However other paradigms such as annotated logic [6, 17],
probabilistic logic [14] and other variants [18, 5, 16] also allow for this and could be
suitable for this task.

Intuitively, the logic program, I1, represents external knowledge. The trained LNN
adds the annotations - the [£, u] bounds - to each propositional sentence in I1. In [7],
the current state s can also be represented as a formula and a given action a can be
represented as an atomic proposition. With shielding we can say action a is “safe” if
the following is consistent.

nmu {s,a} 0.2)

If it is inconsistent, we can measure the inconsistency by examining the difference
¢ — u for all sentences associated containing a and take the maximum (this is

! See the discussion on the “upward-downard” algorithm in Chapter ??.

References 5

denoted ctrd(a, s)). In [7] the authors relax consistency requirements by considering
athreshold value @ which allows for some small level of inconsistency to be tolerated.
The idea of guiding extends this notion by examining the interval values associated
with a and subtracting ctrd(a, s). They use this to compute the probability P(als)
as follows.

v(a,s)

e
Plals) = o———— 0.3)
e e @)
1
v(a,s) = # —ctrd(a,s) 0.4)
The agent selects an action at time ¢ (a,) based on the following criteria.
argmax,c 4 P(als)Q(s,a) C >¢€ 0.5)

randomgcaP(als) otherwise

Here C is a random value that determines if the action takes a random action for
epsilon-greedy action selection. These methods have been shown to provide greater
rewards for an agent navigating through a text-based agent simulation in [7] and
represent an interesting initial step in this line of work.

References

1. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.:
Openai gym (2016)

2. Corso, A., Moss, R., Koren, M., Lee, R., Kochenderfer, M.: A survey of algorithms for
black-box safety validation of cyber-physical systems. J. Artif. Int. Res. 72, 377-428 (2022).
DOI 10.1613/jair.1.12716. URL https://doi.org/10.1613/jair.1.12716

3. Hekmatnejad, M., Hoxha, B., Deshmukh, J.V., Yang, Y., Fainekos, G.: Formalizing and evalu-
ating requirements of perception systems for automated vehicles using spatio-temporal percep-
tion logic (2022). DOI 10.48550/ARX1V.2206.14372. URL https://arxiv.org/abs/2206.14372

4. Kamienny, P.A., d’Ascoli, S., Lample, G., Charton, F.: End-to-end symbolic regression with
transformers. In: A.H. Oh, A. Agarwal, D. Belgrave, K. Cho (eds.) Advances in Neural
Information Processing Systems (2022)

5. Khuller, S., Martinez, M.V., Nau, D.S., Sliva, A., Simari, G.I., Subrahmanian, V.S.: Computing
most probable worlds of action probabilistic logic programs: scalable estimation for 1030, 000
worlds. Ann. Math. Artif. Intell. 51(2-4), 295-331 (2007). DOI 10.1007/s10472-008-9089-2.
URL https://doi.org/10.1007/s10472-008-9089-2

6. Kifer, M., Subrahmanian, V.: Theory of generalized annotated logic programming and its
applications. J. Log. Program. 12(3&4), 335-367 (1992)

7. Kimura, D., Chaudhury, S., Wachi, A., Kohita, R., Munawar, A., Tatsubori, M., Gray, A.:
Reinforcement learning with external knowledge by using logical neural networks. CoRR
abs/2103.02363 (2021). URL https://arxiv.org/abs/2103.02363

8. Lamport, L.: Sometime’ is sometimes 'not never’. In: Proceedings of the Seventh ACM
Symposium on Principles of Programming Languages, ACM SIGACT-SIGPLAN (1980).
URL https://www.microsoft.com/en-us/research/publication/sometime-sometimes-not-never/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Landajuela, M., Petersen, B.K., Kim, S., Santiago, C.P., Glatt, R., Mundhenk, N., Pettit, J.F.,
Faissol, D.: Discovering symbolic policies with deep reinforcement learning. In: International
Conference on Machine Learning, pp. 5979-5989. PMLR (2021)

Ma, M., Gao, J., Feng, L., Stankovic, J.A.: Stlnet: Signal temporal logic enforced multivari-
ate recurrent neural networks. 34th Conference on Neural Information Processing Systems
(NeurIPS 2020) URL https://par.nsf.gov/biblio/10231392

Marcus, G.: Deep learning: A critical appraisal. CoRR abs/1801.00631 (2018). URL
http://arxiv.org/abs/1801.0063 1

Miltersen, P.B., Radhakrishnan, J., Wegener, I.: On converting cnf to dnf. Theoretical Com-
puter Science 347(1), 325-335 (2005). DOI https://doi.org/10.1016/j.tcs.2005.07.029. URL
https://www.sciencedirect.com/science/article/pii/S0304397505004688

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,
A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A,
Antonoglou, 1., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529-533 (2015). URL
http://dx.doi.org/10.1038/nature 14236

Nilsson, N.J.: Probabilistic logic. Artificial ~ Intelligence 28(1), 71—
87 (1986). DOI https://doi.org/10.1016/0004-3702(86)90031-7. URL
https://www.sciencedirect.com/science/article/pii/0004370286900317

Petersen, B.K., Larma, M.L., Mundhenk, T.N., Santiago, C.P., Kim, S.K., Kim, J.T.: Deep
symbolic regression: Recovering mathematical expressions from data via risk-seeking policy
gradients. arXiv preprint arXiv:1912.04871 (2019)

Shakarian, P., Parker, A., Simari, G., Subrahmanian, V.V.S.: Annotated probabilistic temporal
logic. ACM Trans. Comput. Logic 12(2) (2011). DOI 10.1145/1877714.1877720. URL
https://doi.org/10.1145/1877714.1877720

Shakarian, P., Simari, G.: Extensions to generalized annotated logic and an equivalent neural
architecture. In: IEEE TransAl. IEEE (2022)

Shakarian, P., Simari, G.I., Schroeder, R.: Mancalog: a logic for multi-attribute network cas-
cades. In: M.L. Gini, O. Shehory, T. Ito, C.M. Jonker (eds.) International conference on
Autonomous Agents and Multi-Agent Systems, AAMAS 13, Saint Paul, MN, USA, May 6-
10,2013, pp. 1175-1176. IFAAMAS (2013). URL http://dl.acm.org/citation.cfm?id=2485129
Tamar, A., Glassner, Y., Mannor, S.: Optimizing the cvar via sampling (2014). DOI
10.48550/ARXIV.1404.3862. URL https://arxiv.org/abs/1404.3862

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is all you need. In: I. Guyon, U.V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds.) Advances in Neu-
ral Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). URL
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
Paper.pdf

