Supplement to Chapter 10:
Neuro Symbolic Reasoning and Sequential
Decision Making

Supplment to Chapter 10 from Neuro Symbolic Reasoning and Learning - Current
Advances and Future Directions

Deep Symbolic Regression

In this supplement, we provide a diagramthat outlines the overall approach to DSR
in Figure 0.1. An example expression tree for the expression % — ¢* is shown in
Figure 0.2. we briefly describe a very recent transformer-based approach to this

problem introduced by Meta Al at NeurIPS [4].
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Fig. 0.1 Overview of deep symbolic regression.




Fig. 0.2 Example expression tree.

Symbolic Regression with Transformers:

An Alternative to Deep Symbolic Regression.

At the time of this writing (2022) the transformer architecture [20] has largely
supplanted RNN’s in many applications which may lead some to wonder if
DSR can be improved upon by leveraging this powerful architecture. Meta
Al has recently introduced such an approach [4] and it is worth noting, at
least at a high level some of the design decisions. Perhaps the key difference
is that [4] uses a more traditional supervised paradigm, however a “sample”
consisting to individual symbolic regression problems. In other words, their
model is trained on three million (X,y) pairs where X is an d X n matrix.
As this leads to each sample being of size O(nd), an embedding is used to
reduce the input size. The transformer uses 16 attention heads, an embedding
dimension of 512 and 86 million parameters to produce a model. The model
is trained with generated data, relying on established techniques in symbolic
regression (resulting in three million training samples). The result is a model
that accepts an input matrix X as described earlier and returns an expression
- functioning much like a language model. This approach also is reported to
produce state-of-the-art performance and has the benefit of high speed after
training.

Deep Symbolic Policy Learning

In Figure 0.3 we illustrate this in an example on the Lunar Lander.

Other Considerations and Empirical Evaluation. As with DSR, DSP uses a
constant optimization process as an additional refinement step. Empirical studies
in [9] examined results both with and without constant optimization. An additional
hierarchical entropy regularization term was also shown to improve results (note
this regularization was also used in DSR). Another empirical improvement was
the utilization of a soft prior for the length of an expression, as it was found in
experiments that when a maximum length was used on the expression length, nearly
all expressions had a length equal to the threshold. Empirical results on a suite of
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Fig. 0.3 DSP Learning using a black box model to support multiple action dimensions.

tests from OpenAl Gym (including the Lunar Lander used in the figures of this
chapter) showed that DSP consistently provided near state-of-the-art results while
providing for a more compact and explainable model.

Verifying Neural-based Models

Signal Temporal Logic (STL): A Brief Summary.

Signal Temporal Logic (STL) assumes an underlying set of signals associated
with a set of m signals denoted X that underlie the predicates of the logic.
A “signal predicate,” y is an atomic statement that is true when f(x) < 0
for some x € X and function x. A formula is defined based on the following
grammar.

eu=p || @ A" 1@ VO [ 0apy@ | Owpe | @Uape (0.1)

Aside from the temporal operators (¢, O, U), we can view the remainder of
the operations as being treated with the same semantics as propositional logic
(see Chapter ??) with the addition that y is defined in terms of the a function
associated with the value of an underlying signal. Note that we use the variant
of STL described iin [10] which assumes that each signal predicate is associ-
ated with a single signal of X where other treatments more resemble LTN’s
grounding of symbols (Chapter ??) where the symbol is defined in terms of
a function over all signals. We can view the semantic structure as consisting



of a sequence of worlds over many timesteps. Likewise, each signal x € X
has a value associated with each timestep. As such, the temporal operators
“eventually,” “always,” and “until” are temporal operators (¢, 0, U) allow for
specifying formulas over multiple periods of time.

STL allows for the expression of various properties. We list several below.
These can be used to express safety properties, enforce resource constraints,
or account for physical laws.

* Reasonable range. Values of certain signals should always be within a
specified range.

» Consecutive change. The change in a value within a certain time period
should be withing a certain threshold.

e Temporal Correlation. Certain correlations known a-priori can be captured
by such a constraint.

* Existence. Enforces that at a signal will eventually satisfy a certain property.

0.0.1 LNN Shielding and Guiding

The intuition behind the trace generation in STLNet can be viewed as a type of re-
finement if neural output. We have seen similar ideas in DSP learning (e.g., constant
optimization, replacing black-box action dimensions). A similar type of refinement
based on logical constraints for a reinforcement learning trained agent has been de-
scribed in [7] where they enforce constraints using logical neural networks (LNN’s).
In that work, they introduce the concepts of “LNN Shielding” and “LNN Guiding.”
Here, a black box LSTM neural model is used to train a reinforcement learning
agent and its actions are modified based on the deduction process on a logic program
resulintg from a trained LNN !

We note that the idea of shielding and guarding will likely work with other
paradigms other than LNN - as the authors are essentially assuming the existence
of a logic program. The work does use the fact that LNN’s rely on a logic that
uses intervals over reals. However other paradigms such as annotated logic [6, 17],
probabilistic logic [14] and other variants [18, 5, 16] also allow for this and could be
suitable for this task.

Intuitively, the logic program, I1, represents external knowledge. The trained LNN
adds the annotations - the [£, u] bounds - to each propositional sentence in I1. In [7],
the current state s can also be represented as a formula and a given action a can be
represented as an atomic proposition. With shielding we can say action a is “safe” if
the following is consistent.

nmu {s,a} 0.2)

If it is inconsistent, we can measure the inconsistency by examining the difference
¢ — u for all sentences associated containing a and take the maximum (this is

! See the discussion on the “upward-downard” algorithm in Chapter ??.
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denoted ctrd(a, s)). In [7] the authors relax consistency requirements by considering
athreshold value @ which allows for some small level of inconsistency to be tolerated.
The idea of guiding extends this notion by examining the interval values associated
with a and subtracting ctrd(a, s). They use this to compute the probability P(als)
as follows.

v(a,s)

e
Plals) = o———— 0.3)
e e @)
1
v(a,s) = # —ctrd(a,s) 0.4)
The agent selects an action at time ¢ (a,) based on the following criteria.
argmax,c 4 P(als)Q(s,a) C >¢€ 0.5)

randomgcaP(als) otherwise

Here C is a random value that determines if the action takes a random action for
epsilon-greedy action selection. These methods have been shown to provide greater
rewards for an agent navigating through a text-based agent simulation in [7] and
represent an interesting initial step in this line of work.
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