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Additional Discussion

Interpreting Parameters. Note that, unlike PSL/NeurPSL, which assigns weights to
rules [13] (which can be thought of as a single weight for an operator), LNN’s assign
weights to the inputs of an operator. These inputs are associated with the lower-level
logical constructs (i.e., atoms for subformulas). As a result, learned weights can be
viewed as a level of importance for those components. The weights are not required
to sum to 1, so they should be viewed in terms of “absolute” importance, as opposed
to relative importance. The bias (𝛽), which is associated with each logical construct,
is somewhat less interpretable. While the designers of LNN recommend a common
setting for the bias (e.g., 𝛽 = 1 as mentioned earlier), they also view it as the “diffi-
culty” involved in satisfying a given logical formula.

In the context of neuro symbolic reasoning, the concept of weighting arguments
in a logical construct is singular to LNN’s. However, the novelty in the concept
with respect to neuro symbolic reasoning is not the weighting itself, but the fact
that the weights are learned through gradient descent. The idea had appeared earlier
primarily in the context of developing aggregators for use in database queries (e.g.,
[3]).

Perhaps the greater question to raise is that is such a parameterization scheme
viable as we seek to scale neuro symbolic methods? Questions such as should there
be shared weights for various constructs, are parameterized operators leading to
overfitting, and the relationship between weights for pure neural layers (e.g., lower
level perceptual layers) and LNN layers will provide many topics for future research
in the area of LNN’s.
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Interpreting Fuzzy Outputs. With any fuzzy/real-valued logic framework (to in-
clude neuro symbolic approaches), interpreting the values associated with the atoms
is an important issue. However, in the simplest case, a thresholding of the resulting
confidence value can be determined with a typical machine learning validation ap-
proach. In other words, the target predicates (and associated ground atoms) can be
treated as target classes and identifying a level of confidence (fuzzy value thresh-
old) that provides the desired trade-off between precision and recall is a reasonable
approach in many cases. Further, this allows for a direct comparison with standard
black-box machine learning approaches.

However, the introduction of the 𝛼 hyper-parameter in LNN’s and the associated
interpretation of the real values related to truth or falsehood (e.g., see Figure ?? add
an additional layer of complexity. There are three reasons for this. First, the model
is returning intervals rather than scalars. Second, there are pre-defined areas of truth
and falsehood, and the resulting intervals may be subsumed by one of these levels
and/or intersect with one or both levels. Understanding best practices around setting
𝛼 prior to training as well as establishing proper thresholds for decision making in
validation is important in the application of LNN’s to real-world systems. This is
especially in terms of modularity - as it will be important to understand the semantics
of the real-valued intervals provided for target atoms when integrating into other AI
platforms.
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