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Fig. 0.1 𝛿𝐼𝐿𝑃 architecture of [1].
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Complexity

In [1], the authors present an analysis of space (memory) complexity equal to the
sum of the following two expressions:
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These correspond with memory requirements in term of the number of floats for
primary vectors (Eq. 0.1) and intermediate vectors (Eq. 0.2) used in the neural
architecture. Again, here T is the number of inference steps permitted and 𝑛 is
defined as the number of ground atoms, which is bounded by the following:

𝑛 = |𝑃 | · |𝐶 |2 + 1 (0.3)

Set 𝑃𝑖𝑛 is comprised of intensional predicates, which are predicates that only appear
in rule heads (which includes invented predicates and any target predicates for which
one wishes to make inferences about). The entire set of predicates (𝑃) includes 𝑃𝑖𝑛
and 𝑃𝑒𝑥 , which are the extensional predicates (which only appear in rule bodies and
never in the head). The number 𝑛𝑢𝑚𝜏 is the number of rules learned per intensional
predicate, which in [1] is always set to 2.

The set 𝑐𝑙 (𝜏 𝑗
𝑖
) contains the clauses (rules) generated by template 𝜏 𝑗

𝑖
, and the

size of this set is determined by several factors. First is the number of intensional
predicates allowed in the body of each clause (𝑖𝑛𝑡), and second is the number of
variables that can be existentially quantified in the body (𝑣). For 𝑖𝑛𝑡, 𝑣, we note that
they are different for each intensional predicate, so we shall index these values in
that case and use the subscript 𝑚𝑎𝑥 to refer to the max of such values. Third is
the arity of the intensional predicates (which in [1] can be one of {0, 1, 2} for each
predicate, the maximum value of this we shall denote as 𝑎𝑟𝑖𝑡𝑦𝑖 for the 𝑖 template and
this is bounded by 𝑎𝑟𝑖𝑡𝑦𝑚𝑎𝑥 , which will be the maximum arity for any predicate),
and fourth is the number of atoms per body (which is 2 in [1]; they argue that this
is without loss of generality as more atoms per body can be permitted by creating
more invented predicates; however it is noteworthy that doing so also increases
computational complexity). We shall denote this last item with 𝑏𝑜𝑑𝑦𝑚𝑎𝑥 .

Now we shall create a bound on |𝑐𝑙 (𝜏 𝑗
𝑖
) |. We note that the total number of variables

for a given template is 𝑎𝑟𝑖𝑡𝑦𝑖 + 𝑖𝑛𝑡𝑖 . This means that for a given predicate in the
body, there are at most (𝑎𝑟𝑖𝑡𝑦𝑖 + 𝑖𝑛𝑡𝑖)𝑎𝑟𝑖𝑡 𝑦𝑚𝑎𝑥 . The number of possible predicates
for one of the atoms in the body is |𝑃𝑒𝑥𝑡 | + 𝑖𝑛𝑡𝑖 . We note that the number of variable
combinations for a template and arity of 𝑎𝑟𝑖𝑡𝑦𝑖 is (𝑎𝑟𝑖𝑡 𝑦𝑖+𝑣)!

𝑣! ≤ (𝑎𝑟𝑖𝑡𝑦𝑖 + 𝑣)𝑎𝑟𝑖𝑡 𝑦𝑖 .
Hence, the number of possible variable arrangements and predicates for each atom
is bounded by ( |𝑃𝑒𝑥𝑡 | + 𝑖𝑛𝑡𝑖) (𝑎𝑟𝑖𝑡𝑦𝑖 + 𝑣)𝑎𝑟𝑖𝑡 𝑦𝑚𝑎𝑥 . We can re-write the sum over all
intensional predicates from Expressions 0.1 and 0.2 as follows:



References 3

|𝑃𝑖𝑛 |∑︁
𝑖=1

𝑛𝑢𝑚𝜏∏
𝑗

|𝑐𝑙 (𝜏 𝑗

𝑖
) | ≤

|𝑃𝑖𝑛 |∑︁
𝑖=1

𝑛𝑢𝑚𝜏∏
𝑗

(
( |𝑃𝑒𝑥𝑡 | + 𝑖𝑛𝑡𝑖 ) (𝑎𝑟𝑖𝑡 𝑦𝑖 + 𝑣)𝑎𝑟𝑖𝑡𝑦𝑚𝑎𝑥

)𝑏𝑜𝑑𝑦𝑚𝑎𝑥 (0.4)

≤ |𝑃𝑖𝑛 | ·
(
|𝑃 | (𝑎𝑟𝑖𝑡 𝑦𝑚𝑎𝑥 + 𝑣)𝑎𝑟𝑖𝑡𝑦𝑚𝑎𝑥

)𝑏𝑜𝑑𝑦𝑚𝑎𝑥 ·𝑛𝑢𝑚𝜏 (0.5)

We note that based on expected use cases as expressed in [1], we have 𝑛𝑢𝑚𝜏 = 2,
𝑏𝑜𝑑𝑦𝑚𝑎𝑥 = 2, 𝑎𝑟𝑖𝑡𝑦𝑚𝑎𝑥 = 2, 𝑣𝑚𝑎𝑥 = 1, and thus get the following.

6561 · |𝑃𝑖𝑛 | · |𝑃 |4 (0.6)

While this is an upper bound on space complexity, this is mainly due to smaller-
arity sized predicates as well as pruning (e.g., two non-ground atoms create the
same clause if their order is reversed). However, it is noteworthy that such exact
pruning only reduces space complexity, but has minimal effect on time complexity
(as such clauses are generated). We also note that the above result, especially taken
in consideration with Expressions 0.1-0.3 is in line with a quintic run-time (in terms
of predicates). We can re-write overall space complexity as being bounded by the
following:

6561 · (2 · 𝑛 · T + 3 · 𝑛 · |𝐶 |) · |𝑃𝑖𝑛 | · |𝑃 |4 (0.7)
≤ 6561 · ( |𝑃 | · |𝐶 |2 + 1) · (2 · T + 3 · |𝐶 |) · |𝑃𝑖𝑛 | · |𝑃 |4 (0.8)

≈ 6561 · (2 · T + 3 · |𝐶 |) · |𝑃𝑖𝑛 | · |𝐶 |2 · |𝑃 |5 (0.9)
≤ 𝐾 · |𝑃𝑖𝑛 | · |𝐶 |3 · |𝑃 |5 (0.10)

In line 0.10 (where 𝐾 is a large constant), it could also be the case that T > |𝐶 |, and
theoretically we may want this to be true (for correct reasoning); however, we note
that in the current work on 𝛿𝐼𝐿𝑃 , scalability precludes the full chaining of inference
rules (and so T is typically set to a small natural number, e.g. T = 3).
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