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Learning the Relaxed Constraint Matrix

We now discuss the backpropagation process used to learn the relaxed constraint
matrix. At a high level, this involves propagating the gradient from the outputs with
respect to the loss function (denoted ℓ) by computing the gradient with respect to the
relaxation of the outputs ( 𝜕ℓ

𝜕𝑉O
), then pushing the gradients through the semidefinite

program routine, resulting in matrix 𝑈, which in turn allows for the computation of
the gradient with respect to the relaxed inputs ( 𝜕ℓ

𝜕𝑉I
) and with respect to the relaxed

constraint matrix ( 𝜕ℓ
𝜕𝑆

) and with respect to the original inputs ( 𝜕ℓ

𝜕�̃�I
). First, we show

the derivation of 𝜕ℓ
𝜕𝑣O

(𝑣𝑜 is a component of 𝑉O) as follows.

𝜕ℓ

𝜕𝑣𝑜
=

(
𝜕ℓ

𝜕�̃�𝑜

)
1

𝜋 sin(𝜋�̃�𝑜)
𝑣⊤

Note that here 𝑜 are only indices of set O and �̃�𝑜 refers to the probabilistic value.
The next step in backward propagation is to push the gradients through the SDP

optimization routine providing matrix𝑈 that, in turn, is used to compute 𝜕ℓ
𝜕𝑉I

and 𝜕ℓ
𝜕𝑆

.
This is done by taking the total differential through the coordinate descent updates
for each of the outputs where the coordinate descent with Algorithm .

Coordinate Descent for Backward Pass For each 𝑜 ∈ O, 𝜕ℓ
𝜕𝑣𝑜

𝑈O 𝑈O ← 0 Ψ←
(𝑈O)𝑆𝑇O not converged 𝑜 ∈ O d𝑔𝑜 ← Ψ𝑠𝑜 − ∥𝑠𝑜∥2 𝑢𝑜 − 𝜕ℓ

𝜕𝑣𝑜
𝑢𝑜 ← −𝑃𝑜d𝑔𝑜/∥𝑔𝑜∥

where 𝑔𝑜 = 𝑉𝑆𝑇 𝑠𝑜 − ∥𝑠𝑜∥2 𝑣𝑜 and 𝑃𝑜 ≡ 𝐼𝑘 − 𝑣𝑜𝑣𝑇𝑜 Ψ← Ψ + (𝑢𝑜 − 𝑢𝑝𝑟𝑒𝑣
𝑜 )𝑠𝑇𝑜

With the calculation of the 𝑈 matrix, we can then find 𝜕ℓ
𝜕𝑉I

and 𝜕ℓ
𝜕𝑆

as follows
(Expressions 0.1 and 0.2).
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Fig. 0.1 Example input and output for Sudoku.

Fig. 0.2 Overview of SATNet integrated with an unsupervised perceptual model.

𝜕ℓ

𝜕𝑉I
= −

(∑︁
𝑜∈O

𝑢𝑜𝑠
𝑇
𝑜

)
𝑆I (0.1)

𝜕ℓ

𝜕𝑆
= −

(∑︁
𝑜∈O

𝑢𝑜𝑠
𝑇
𝑜

)𝑇
𝑉 − (𝑆𝑉𝑇 )𝑈 (0.2)

Finally, to compute the derivative with respect to the initial inputs (as opposed to the
vector relaxations), we have the following.

𝜕ℓ

𝜕�̃�𝑖
= −

(
𝜕𝑣𝑖

𝜕�̃�𝑖

)𝑇 (∑︁
𝑜∈O

𝑢𝑢𝑠
𝑇
𝑜

)
𝑠𝑖 (0.3)

Where
𝜕𝑣𝑖

𝜕�̃�𝑖
= 𝜋(sin(𝜋�̃�𝑖)𝑣⊤ + cos(𝜋�̃�𝑖) (𝐼𝑘 − 𝑣⊤𝑣𝑇⊤)𝑣𝑟𝑎𝑛𝑑𝑖 ) (0.4)

Note that additional direct dependencies between ℓ and �̃�𝑖 should be added as a term
to Expression 0.3.

Addressing Symbol Grounding in SATNet.

The research gap identified by [1] led to further investigation into SATNet’s per-
formance. There was interest to see if a combined perceptual-reasoning framework
could be trained. A promising approach emerged in [2]. The idea is to use unsuper-
vised learning, self-grounded training, and an additional proofreading layer to train
the model without any supervision. An overview of this framework is shown in 0.2.
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Unsupervised Digit Classifier. In [2] the authors use an unsupervised method on the
input data to cluster it into classes. The number of classes (9 in the case of Sudoku)
is assumed to be known ahead of time. In [2] the authors use InfoGAN to perform
the clustering. To add the clustering knowledge to the neural architecture, they use it
to train LeNet based on a 1-hot encoding - but note there is still done without access
to ground truth information of the digits (LeNet is trained using the results of the
clustering algorithm).

Self-Grounded Training. The output of LeNet has used an input for the remaining
layers. However, the meaning of the digits is still not yet known. The output of LeNet
is an encoding of the digits (the pre-trained encoding) denoted �̂�𝑃𝑇𝐸

𝑖𝑛
. This is related

to the actual label encoding, �̂�𝐿𝐸
𝑖𝑛

by a permutation matrix P, giving us the following.

�̂�𝑃𝑇𝐸𝑖𝑛 P = �̂�𝐿𝐸𝑖𝑛 (0.5)

Note that SATNet can be trained correctly on either �̂�𝑃𝑇𝐸
𝑖𝑛

or �̂�𝐿𝐸
𝑖𝑛

(this was empiri-
cally verified in [2]). This is because SATNet is permutation-invariant. We note that
the output set in the training, 𝑦𝐿𝐸 is symbolic (even when masked). Hence, we can
assume the following relationship.

�̂�𝑃𝑇𝐸𝑜𝑢𝑡 P ≈ 𝑦𝐿𝐸 (0.6)

This leads to the following loss function.

L( �̂�𝑃𝑇𝐸𝑜𝑢𝑡 , 𝑦𝐿𝐸) = 1 −mean𝑖 (max
𝑗
(𝑒−𝐵𝐶𝐸 (𝑦𝐿𝐸 ( 𝑗 ) , �̂�𝑃𝑇𝐸

𝑜𝑢𝑡 (𝑖) ) )) (0.7)

Where 𝐵𝐶𝐸 is the binary cross-entropy loss between two vectors. By minimizing
this loss function, we can recover an approximate permutation matrix.

P̂𝑖 𝑗 = 𝑒−𝐵𝐶𝐸 (𝑦𝐿𝐸 ( 𝑗 ) , �̂�𝑃𝑇𝐸
𝑜𝑢𝑡 (𝑖) ) (0.8)

In practice, the max function is replaced with an approximation (in [2] the authors
use a 2-norm, but mention that results were not sensitive to this choice).

Training proceeds as follows. The LeNet layers (already trained from the results
of the unsupervised step) are now frozen and the training of the SATNet layers
proceeds using the loss function of Expression 0.7. This continues until �̂� has con-
verged. Now, the loss function is replaced with standard cross entropy, using �̂� (now
frozen) to return the proper label encodings. The LeNet layers are also unfrozen at
this time. We also note an additional “proofreading” linear layer is also added to
improve performance. This layer is added prior to the SATNet layers. It constitutes a
final step of training where the rest of the architecture is frozen and the proofreading
layer is trained.

Results. While the method proposed by [2] does not provide an ideal end-to-end
neural architecture (e.g., train a single architecture with a single run of gradient
descent), it does allow for training with a totally untrained perceptual layer where
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the only information known was the number of classes. It achieves an accuracy of
64.8%, which is comparable to SATNet’s performance with indirect supervision.
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