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Overview

• 8:30-8:45  Tutorial Overview (Shakarian)

• 8:45-9:30 Introduction and overview of neuro symbolic frameworks for 
reasoning and learning (Shakarian)

• LNN, Annotated Logic, dILP, DSP, SATNet

• 9:30-9:40 Break

• 9:40-10:40 Neuro symbolic based approaches for deduction (Simari)
• LTN and deep ontological networks

• 10:40-10:50 Break

• 10:50-11:50 Combining perceptual neural networks with logic and 
applications (Baral)

• NeurASP, and NLP/VQA applications

• 11:50-12:00 Break

• 12:00-12:30 Neuro Symbolic Reasoning for the DoD (DARPA) 
(Velasquez)



Resources: Tutorial Web Page

• https://labs.engineering.asu.edu/labv2/2023-
aaai-tutorial-advances-in-neuro-symbolic-
reasoning/

https://labs.engineering.asu.edu/labv2/2023-aaai-tutorial-advances-in-neuro-symbolic-reasoning/


Resources: YouTube Channel

• https://www.youtube.com/@neurosymbolic

https://www.youtube.com/@neurosymbolic


Resources: Book

• Anticipated release 
in late Spring/early 
Summer 2023

• Published by 
Springer-Nature



Why Neuro Symbolic?

• Neural Methods provide great results, but 
often have difficulties in reasoning, 
explainability, and modularity.

• Symbolic methods excel in the above areas, 
but have difficulty coping with noise and 
deriving robust models from real-world data

• Can we have the best of both worlds?



ChatGPT Failures on Math Word Problems

P. Shakarian, A. Koyyalamudi, N. Ngu, L. Mareedu, An Independent Evaluation of ChatGPT on Mathematical Word Problems 

(MWP), AAAI Spring Symposium (Mar. 2023). Accepted.



More Additions → More Failures for ChatGPT

R2=0.82, 95% confidence intervals

P. Shakarian, A. Koyyalamudi, N. Ngu, L. Mareedu, An Independent Evaluation of ChatGPT on Mathematical Word Problems 

(MWP), AAAI Spring Symposium (Mar. 2023). Accepted.



Pac-Man

Can we tell Pac-Man to not take dumb 

moves?

Idea: express such restrictions in logic.

→ This is called “Logical shielding”

Will it make the Pac-Man playing AI work 

better?



Pac Man Performance on

“Medium” Difficulty Board

R
e

w
a
rd

Approx. Q-learning w. logical 
shielding

Approx. Q-learning w/o logical shielding

Q-learning w. logical 
shielding

Q-learning w/o logical 
shielding

Training Episode

Thanks to Tanmay Khandait. Devendra Rajendra Parkar, and Kirby Kuznia for 

allowing us to share the results of their student project from CSE 591.
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Overview

• Generalizing differentiable logic with 
annotated logic

• Logical Neural Networks

• Differentiable Inductive Logic Programming

• Deep Symbolic Policy Learning

• Learning with STL Constraints: STL Net

• Learning Constraints to Combinatorial 
Problems: SAT Net



Generalizing Differentiable Logic with Annotated Logic

Papers:

M. Kifer, V.S. Subrahmanian, Theory of Generalized Annotated Logic Programs 
and its Applications. Journal of Logic Programming, Elsevier, 1992.

P. Shakarian, G. Simari, Extensions to Generalized Annotated Logic and an 
Equivalent Neural Architecture, IEEE TransAI, 2022.

D. Aditya, K. Mukherji, S. Balasubramanian, A. Chaudhary, P. Shakarian, 
PyReason: Software for Open World Temporal Logic, AAAI Spring Symposium 
(Mar. 2023). 



Annotated Logic 

Logical atoms are “annotated” with values from a lattice structure or functions 

(“annotation functions”) over such a structure, below is an example of a rule in 

general annotated logic.

If we specify our lattice as scalars in [0,1] and use T-norms, T-conforms and 

other fuzzy logic operators as annotation functions, then we can capture various 

other real-valued logics (e.g., the logics used in LTN’s).

However, provided that we keep the annotation functions differentiable, there 

framework offers more flexibility. 

Kifer and Subrahmanian 1992 show results in the general case (annotations 

from arbitrary lattice structures), specifically showing that a fixpoint operator 

provides exact deductive inference.

M. Kifer, V.S. Subrahmanian, Theory of Generalized Annotated Logic Programs and its Applications. Journal of Logic Programming, Elsevier, 1992.



Annotated Logic Enables Open-World 
Reasoning

• Several papers have 
associated logical atoms with 
subsets of the [0,1] interval

• MANCaLog (Shakarian et al., 
2013) proposed that with 
annotated logic for 
knowledge graph reasoning

• LNN’s also use intervals 
associated with logical atoms

• A key advantage over scalars 
is that this approach permits 
open-world novelty

True

[1,1]
False

[0,0]

Uncertain

[0,1]

P. Shakarian, G. Simari, D. Callahan. Reasoning about Complex Networks: A Logic Programming Approach.  ICLP-13. 

P. Shakarian, G. Simari, R. Schroeder. MANCaLog: A Logic for Multi-Attribute Network Cascades.  AAMAS-13. 



Neural Equivalent Architecture

• Building on ideas 
from differentiable 
ILP, we proposed an 
architecture to 
leverage annotated 
logic for rule 
learning

• Key idea: a 
recurrent neural unit 
aligns with a 
deductive fixpoint 
operator

P. Shakarian, G. Simari, Extensions to Generalized Annotated Logic and an Equivalent Neural Architecture, IEEE TransAI, 2022.



PyReason: Python-based temporal first-order logic explainable AI system 

supporting uncertainty, open-world novelty, and graph-based reasoning.

• Supports generalized annotated logic with temporal, 

graphical and uncertainty extensions, capturing a wide 

variety of fuzzy, real-valued, interval, and temporal logics

• Modern Python-based system supporting reasoning on 

graph-based data structures (e.g., exported from Neo4j, 

GraphML, etc.)

• Rule-based reasoning in a manner that support 

uncertainty, open-world novelty, non-ground rules, 

quantification, etc., agnostic to selection of t-norm, etc.

• Fast, highly optimized, correct fixpoint-based deduction 

allows for explainable AI reasoning, scales to graphs 

with over 30 million edges

D. Aditya, K. Mukherji, S. Balasubramanian, A. Chaudhary, P. Shakarian, PyReason: Software for Open World Temporal 

Logic, AAAI Spring Symposium (Mar. 2023).  Accepted. 

GitHub:

https://github.com/lab-v2/pyreason

Python:
pip install pyreason

https://github.com/lab-v2/pyreason


PyReason

Supports Generalized Annotated Logic

Finite-time temporal logic (e.g., as used in STLNet)

Supports inference with fuzzy operators (e.g., LTN))

Supports open world novelty and parameterized operators 

(e.g., LNN)

Supports graph-based reasoning (e.g., MANCALog)

D. Aditya, K. Mukherji, S. Balasubramanian, A. Chaudhary, P. Shakarian, PyReason: Software for Open World Temporal 

Logic, AAAI Spring Symposium (Mar. 2023).  Accepted. 



Logical Neural Networks

Papers:

Riegel, R., Gray, A., Luus, F., Khan, N., Makondo, N., Akhalwaya, I.Y., 
Qian, H., Fagin, R., Barahona, F., Sharma, U., Ikbal, S., Karanam, H., 
Neelam, S., Likhyani, A., Srivastava, S.: Logical neural networks (2020).

Sen, P., Carvalho, B.W.S.R.d., Rabdelaziz, I., Kapanipathi, P., Roukjos, S., 
Gray, A.: Logical Neural Networks for Knowledge Base Completion with 
Embeddings and Rules, EMNLP (2022).



LNN’s

Key ideas:

• Each input to an operator is 
associated with a parameter 
(“importance weighting”)

• Forward pass is a deduction 
algorithm (equivalent to the 
fixpoint operator of general 
annotated programs)

• Hyperparameter a sets a 
threshold for truth and 
falsehood

• Logic program known a priori 
(like in LTN’s)

• Learning process finds 
parameters such that 
operators retain classical 
functionality



LNN: Inference

• Input to inference:
• Set of formulas

• Initial truth bounds for each atom and formula

• Bias and weight for each formula (connector)

• Output:
• Final truth bounds for each formula and atom

• Authors propose a upward-downward pass 
through the logic (this is different from forward-
backward pass used in gradient descent)

• The algorithm propagates truth values from atoms 
to the formula (upward) and from the formulas to 
the atoms (downward) until convergence



LNN: Activation Functions



LNN: Learning

• Neural architecture is derived directly from the a-
priori known formulas

• Historical inputs and outputs used as samples 
during the training process

• Loss function depends not only on standard ML 
metrics (e.g., MSE) but also the number of 
inconsistencies (neurons associated with a truth 
bound where L>U.

• The functions used to combine formulas are 
differentiable with respect to the weights

• The forward pass of the learning process can be 
done with the inference algorithm (which is 
essentially a fixpoint operator)



LNN: Syntax Tree / Neural Structure



Objective Function with Constraints

• To ensure reasonable settings of parameters, the 
authors show how the parameter-learning problem 
can be framed as an optimization problem with 
constraints

• Here, E(B,W) is the traditional loss function and the 
summation                               is designed to reduce 
the number of inconsistencies

• Some Issues: (fully listed in section F.1)
• Requirement of additional slack parameters
• Parameter updates require constraint satisfiaction
• b must be learnt for each neuron, hinders interpretability and 

leads to overfitting

Formalism is from Riegel et. al, 2020 (Sec. 6)



Tailored Activation Function

Formalism is from Riegel et. al, 2020 (Sec. 6)

Shown here is a tailored activation function for disjunction with b=1.

Key advantages:

- The logic is maintained regardless of the weights

- The authors claim that the output is independent of b, so they define it 

as 



Overall Strategy

• Use gradient descent to find weights, using 
normal back-propagation and the 
aforementioned inference process for the 
forward pass

• Loss function combines normal metrics (e.g., 
MSE) and a count of inconsistent neurons



Key Issues to Consider

• Parameters w and b must be set in a way such 
that classical logic outcomes for the operators 
behave as expected

• Learning parameters that fit vs. interpretability



Inconsistency

• Not fundamentally guaranteed

• Authors do mention that consistency check 
can be done during the training process

• It is noteworthy that consistency is based on 
neurons, not atoms – so for all formulas 
known a-prior, you know which ones will be 
inconsistent

• However, if you are checking an entailment 
query against the logic, there are no 
guarantees if it is correct



Recent Work

• Sen et al. (2022) extend LNN’s for rule-
learning in knowledge graphs and achieve 
state-of the art performance on KBC tasks.

• Approach is complementary to embedding-
based approaches to the problem – and the 
combination provides further improvement.



Differentiable Inductive Logic Programming

Paper:

Evans, R., Grefenstette, E.: Learning explanatory rules 
from noisy data. J. Artif. Int. Res. 61(1), 1–64 (2018)



The Logic of dILP

First-Order Logic (predicates and constants)
• Given predicates p, q constant c and variable x

• p(c) is a ground atom

• p(x) is non-ground

• q(x) p(x) is a non-ground rule (“if p then q”)

• Each non-ground rule will have multiple 
grounded instances

• Assume facts (ground atoms) and (non-ground) 
rules

• Limits on the number of inference steps (i.e., 
applications of a fixpoint operator) – denoted T



ILP by SAT Solving

Intuition:

1. A “template” specifies the format of a rule (e.g., number of body predicates, free 

existentially quantified variables, number of invented predicates, etc.)

2. For a given predicate, “candidate” rules are generated based on a template

3. An additional atomic proposition is added to the end of each candidate

4. Given positive and negative facts, find a subset of the propositions that “turn on” 

candidate rules such that positive facts are entailed and negative facts are not



• The overall goal is to compute the following 
conditional probability

• Such that the following loss is minimized

Learning Problem

Truth value for 

ground atom a

Atom, value 

(in {0,1} ) 

pairs in 

ground truth

Weights (learned), program 

template, language, and facts



Inductive Inference by Gradient Descent

Weights associated with each 

intentional predicate and pair of 

templates associated with the 

predicate.

Pre-Processing

Clause 

Generation

Conversion of 

Background 

knowledge to 

Vector 

Representation

Vector at

Initial atom values 

Vectors ct

Vectors (for each intentional predicate and pair of 

templates) giving the maximum truth value to atoms 

formed with each intentional predicate 

Vectors bt

Vectors (for each intentional predicate) takes weighted 

average for truth values of each ground atom from the 

corresponding ct vectors using softmax and the 

associated weights

Vector at+1

Amalgamation of vectors at and bt using probabilistic sum

Recurrence 

structure
For each 

inference step as 

specified by 

program template 

hyperparameters

Overall Architecture



Bounding the Number of Templates

• A major source of complexity is the number of 
templates, which can be bounded by various 
quantities as follows:

• Under the assumptions in the paper, the 
above bound is equal to the following:



Experimental Notes

• Training data:
• Training data consists of multiple ℬ,𝒫,𝒩 triples

• At each step, one of the triples is samples

• From the sampled triple, a mini batch of 𝒫⋃𝒩 is selected

• Authors state that this method helps escape local minima

• Training occurs in 6,000 steps

• Other notes:
• Cross-entropy loss (seen in other work as well)

• RMS Prop used as optimizer with a learning rate of 0.5

• Adam also gave reasonable results

• RMS Prop performed well with lower learning rates (e.g., 
0.01)

• Clause weights initialized from a normal distribution over the 
interval [0,1] (mean zero, sd between 0 and 2)



Deep Symbolic Policy Learning

Papers:

Petersen, B.K., Larma, M.L., Mundhenk, T.N., Santiago, C.P., Kim, S.K., Kim, 
J.T.: Deep symbolic regression: Recovering mathematical expressions from 
data via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871 (2019)

Landajuela, M., Petersen, B.K., Kim, S., Santiago, C.P., Glatt, R., Mundhenk, 
N., Pettit, J.F., Faissol, D.: Discovering symbolic policies with deep 
reinforcement learning. In: International Conference on Machine Learning, pp. 
5979–5989. PMLR (2021)



DSP: Motivating Example

Key idea: Understanding physical systems 
based on data with compact mathematical 
expressions.



Expression Tree

An expression tree is a 

syntax tree for 

mathematical expressions.

Unlike LNN’s where the syntax 

tree is given and embedded 

into the NN, in DSO/DSR we 

learn the tree using an RNN in 

a RL framework.



Why Symbolic Policies for Control?

• Traditional control theory and mathematical 
physics approaches for control result in simple 
but effective models

• Further, these models are mathematical 
equations that are simple (hence regularized), 
easily understood, and can be efficient to 
implement

• Prior work on RL for control results in black-
box models that do not have these features



Deep Symbolic Regression

Generate distribution of 

expressions with an RNN

Evaluate reward associated 

with expressions based on 

NRMSE to identify top 

epsilon expressions

Compute gradient using top 

epsilon expressions via 

“risk-seeking” reward 

function

Update RNN parameters

∇𝜃𝐽𝑟𝑖𝑠𝑘(𝜃; 𝜀)

1

𝜎

1

𝑛


𝑖
(𝑦𝑖 − 𝑓(𝑋𝑖 ))

2



Reward for Individual Expressions

Number of episodes

Time steps 

in episode i

Reward for time t

in episode i



“Risk-Seeking” Policy Gradient

Risk-seeking reward function

Gradient

Standard policy gradient is based on an overall expected value

CVaR policy gradient considers only the lowest risk candidates in a given sample 

(Tamar et al., 2014)

This work uses a risk-seeking policy gradient that is looking at the highest-reward 

expressions



Adding Multiple Dimensions

• The authors note that multiple action 
dimensions leads to a combinatorial explosion

• They overcome the problem using a non-
symbolic “anchor model”

• The intuition is that each action dimension is 
learned sequentially.

• When action dimension i is learned, the algorithm 
uses previously learned symbolic actions 1,…,i-1 
and the anchor (non-symbolic NN-learned) actions 
for i+1,…,n.



Deep Symbolic Policies



STL Net

Paper:

Ma, M., Gao, J., Feng, L., Stankovic, J.A.: Stlnet: Signal temporal logic 
enforced multivariate recurrent neural networks. 34th Conference on 
Neural Information Processing Systems (NeurIPS 2020).



Signal Temporal Logic (STL)

• A temporal logic (like 
LTL or CTL)

• Semantic structure 
assumes multiple 
worlds or states over 
time

• Allows for reasoning 
over time intervals 
(like MTL)

• Predicates represent 
analog signals 
meaning that they 
are equivalent to the 
value of a function 
exceeding a certain 
value (usually zero)



STL Net: Setup

• m signals over time

• Subsequence of a signal 

• Model takes in “prefix” subsequences to determine the rest of the signal

• Goal: Find model parameters that both minimize loss and adhere to STL 
specifications



Student-Teacher Framework



STL Loss Function

• The specialized loss function is used to compare the 
result from the neural network not only with the 
training data, but also with the result of the parent 
network

• Hyperparameter beta measures the trade-off between 
the two

hyperparameter ground truth teacher result



Adjusting Neural Network Results to Meet a 
Specification

• We can think of the result of the neural model 
as a sequence of worlds over time (just note 
that the atoms in the worlds depend on analog 
values)

• If we can express a specification in a manner 
that allows us to simply compare worlds to the 
spec, we can update the trace in a 
straightforward manner



Key Idea: Converting Specification to 
DNF Form

• Turning the specification into DNF form 
(disjunction of conjunctions of literals) provides a 
few useful properties:

1. Only one clause of the disjunction must be satisfied 
for the specification to be satisfied (so you can just 
iterate through clauses)

2. The conjunctions of literals are very easy to compare 
with a world (as essentially you are just checking 
every atom and negation with each world in the 
sequence)

3. Changing a sequence to meet a specification 
becomes trivial as you can simply modify the value 
associated with a specific predicate – and you can 
perform the modifications in such a way to be near 
the trace (via L1) as possible



Scalability

• STLNet relies the ability to convert STL 
formulas from CNF to DNF.

• However, doing so could result in an 
exponentially-large formula (Miltersen et al., 
2005)

• Left alone, this could hinder the scalability of 
the approach, though unde

Miltersen, P.B., Radhakrishnan, J., Wegener, I.: On converting cnf to dnf. Theoretical Computer Science 347(1), 325–335 (2005). 



SATNet

Papers:

Wang, P., Donti, P.L., Wilder, B., Kolter, J.Z.: Satnet: Bridging deep learning and logical reasoning using 
a differentiable satisfiability solver. In: K. Chaudhuri, R. Salakhutdinov (eds.) Proceedings of the 36th 
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, 
USA, Proceedings of Machine Learning Research, vol. 97, pp. 6545–6554.

Chang, O., Flokas, L., Lipson, H., Spranger, M.: Assessing satnet's abil- ity to solve the symbol 
grounding problem. In: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin (eds.) Advances in 
Neural Information Process- ing Systems, vol. 33, pp. 1428–1439. Curran Associates, Inc. (2020).

Topan, S., Rolnick, D., Si, X.: Techniques for symbol grounding with satnet. Advances in Neural 
Information Processing Systems 34, 20733–20744 (2021)



The MAX SAT problem

INPUT:

Given Boolean variables 𝑥1, … , 𝑥𝑚 and causes 𝐶1, … , 𝐶𝑛 where each clause 

is a disjunction of literals (atoms or negations). (Conjunctive normal form)

OUTPUT:

An assignment of Boolean variables such that the number of satisfied 

clauses is maximized.

Notes:

• Known to be NP-hard (even when each clause has just two literals)

• The clauses can be numerically represented by matrix (𝑀) of dimensions 

𝑛 × 𝑚 (in the original paper, 𝑆 is used instead of 𝑀)

• Often framed as an optimization problem



Sudoku can be framed as an instance of MAX 

SAT with partially known Boolean variables

A visual variant of the problem is one in which 

the input is presented as images instead of text.

Partial Knowledge MAX SAT variant

An extension to the problem 

is to partition the 𝑚 Boolean 

variables into two groups: 

input (𝑎1,…,𝑘
𝑖𝑛 ) and output 

(𝑎𝑘+1,…,𝑚
𝑜𝑢𝑡 ) 

Hence, we can think of MAX 

SAT as the following problem:

𝑎𝑘+1,…,𝑚
𝑜𝑢𝑡 = 𝑆(𝑎1,…,𝑘

𝑖𝑛 , 𝑀)

Where 𝑆 is an oracle and 𝑀 is 

the matrix representing the 

clauses.



SAT Net Framework

• A relaxation via Semi Definite programming is used to solve the 
MAX SAT instance

• The gradient is propagated through the SATNet layers using 
coordinate descent

• A relaxed constraint matrix is learned (i.e., for the approximate 
solution of the problem) as opposed to interpretable constraints

• 98.3% accuracy for Sudoku, 63.2% reported accuracy for visual 
case

• For the visual Sudoku problem, LeNet is used to classify the 
digits (pre-trained)

Input

Discrete or 

probabilistic 

propositional atoms

Input Relaxation

Relax each input 

into a random 

unit vector

Coordinate Descent 

Approximates solution to 

MAXSAT using relaxed 

constraint matrix

Output

Use of threshold or 

randomized rounding to 

produce final output



Visual Variant

• While standard CNN approach fails in visual case, SATNet approaches a 
theoretical limit (based on digit accuracy) for accuracy in visual Sudoku

• Later, Chang et al. (2020) showed that SATNet leveraged label leakage.  SATNet
fails catastrophically when labels are masked.



Despite its shortcomings, SAT Net has 
significacne

• It successfully could learn constraints in a 
differentiable framework

• Combinatorial forward pass and ability to 
derive gradients for backpropagation

• Significantly outperformed standard DL 
architectures

• (this was significant at the time of publication)



The relationship between symbols and 
perception

• Transduction problem 
• If they exist, how then, are the perceptual states mapped into 

amodal symbols? (Barsalou, 1999)

• Symbol grounding problem
• The reverse of the transduction problem
• How are amodal symbols grounded in perception? (Barsalou, 

1999)

• Chang et al. argue that SAT Net did not adequately 
solve the symbol grounding problem.

• They probably really mean the transduction problem – as the 
issue was the transduction of perception into symbols

• Note: Symbol grounding does come up in ML verification –
ensuring that a symbol maps back properly to percpetion



Unsupervised Learning to address 
transduction/symbol grounding

• Topan et al., seek to directly address the 
shortcomings of SAT Net:

• Use of unsupervised learning for digit recognition

• Additional loss term to account for in accurate digits

• Addition of proofreader layer improved performance (an 
extra boost, but not directly related to the problem of 
transduction)



More recent work

• Symbol grounding
• Abduction (Dai & Muggleton, 2021), (Dai et al., 

2019)

• Appreciation / binarized neural networks (Evans et 
al., 2021)

• DeepLogic (Duan, 2022)

• Learning constraints to combinatorial 
problems via deep learning

• CombOptNet (Paulus et al., 2021)

• Solver-Free (Nandawi et al., 2022)



Questions
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