
Advances in Neuro Symbolic
Reasoning (and Learning)

AAAI 2023 Tutorial

Overview

• 8:30-8:45 Tutorial Overview (Shakarian)

• 8:45-9:30 Introduction and overview of neuro symbolic frameworks for
reasoning and learning (Shakarian)

• LNN, Annotated Logic, dILP, DSP, SATNet

• 9:30-9:40 Break

• 9:40-10:40 Neuro symbolic based approaches for deduction (Simari)
• LTN and deep ontological networks

• 10:40-10:50 Break

• 10:50-11:50 Combining perceptual neural networks with logic and
applications (Baral)

• NeurASP, and NLP/VQA applications

• 11:50-12:00 Break

• 12:00-12:30 Neuro Symbolic Reasoning for the DoD (DARPA)
(Velasquez)

Resources: Tutorial Web Page

• https://labs.engineering.asu.edu/labv2/2023-
aaai-tutorial-advances-in-neuro-symbolic-
reasoning/

https://labs.engineering.asu.edu/labv2/2023-aaai-tutorial-advances-in-neuro-symbolic-reasoning/

Resources: YouTube Channel

• https://www.youtube.com/@neurosymbolic

https://www.youtube.com/@neurosymbolic

Resources: Book

• Anticipated release
in late Spring/early
Summer 2023

• Published by
Springer-Nature

Why Neuro Symbolic?

• Neural Methods provide great results, but
often have difficulties in reasoning,
explainability, and modularity.

• Symbolic methods excel in the above areas,
but have difficulty coping with noise and
deriving robust models from real-world data

• Can we have the best of both worlds?

ChatGPT Failures on Math Word Problems

P. Shakarian, A. Koyyalamudi, N. Ngu, L. Mareedu, An Independent Evaluation of ChatGPT on Mathematical Word Problems

(MWP), AAAI Spring Symposium (Mar. 2023). Accepted.

More Additions → More Failures for ChatGPT

R2=0.82, 95% confidence intervals

P. Shakarian, A. Koyyalamudi, N. Ngu, L. Mareedu, An Independent Evaluation of ChatGPT on Mathematical Word Problems

(MWP), AAAI Spring Symposium (Mar. 2023). Accepted.

Pac-Man

Can we tell Pac-Man to not take dumb

moves?

Idea: express such restrictions in logic.

→ This is called “Logical shielding”

Will it make the Pac-Man playing AI work

better?

Pac Man Performance on

“Medium” Difficulty Board

R
e

w
a
rd

Approx. Q-learning w. logical
shielding

Approx. Q-learning w/o logical shielding

Q-learning w. logical
shielding

Q-learning w/o logical
shielding

Training Episode

Thanks to Tanmay Khandait. Devendra Rajendra Parkar, and Kirby Kuznia for

allowing us to share the results of their student project from CSE 591.

Introduction and overview of neuro symbolic
frameworks for reasoning and learning

Paulo Shakarian

Associate Professor

Arizona State University

pshak02@asu.edu

AAAI 2023, Tutorial Section

mailto:pshak02@asu.edu

Overview

• Generalizing differentiable logic with
annotated logic

• Logical Neural Networks

• Differentiable Inductive Logic Programming

• Deep Symbolic Policy Learning

• Learning with STL Constraints: STL Net

• Learning Constraints to Combinatorial
Problems: SAT Net

Generalizing Differentiable Logic with Annotated Logic

Papers:

M. Kifer, V.S. Subrahmanian, Theory of Generalized Annotated Logic Programs
and its Applications. Journal of Logic Programming, Elsevier, 1992.

P. Shakarian, G. Simari, Extensions to Generalized Annotated Logic and an
Equivalent Neural Architecture, IEEE TransAI, 2022.

D. Aditya, K. Mukherji, S. Balasubramanian, A. Chaudhary, P. Shakarian,
PyReason: Software for Open World Temporal Logic, AAAI Spring Symposium
(Mar. 2023).

Annotated Logic

Logical atoms are “annotated” with values from a lattice structure or functions

(“annotation functions”) over such a structure, below is an example of a rule in

general annotated logic.

If we specify our lattice as scalars in [0,1] and use T-norms, T-conforms and

other fuzzy logic operators as annotation functions, then we can capture various

other real-valued logics (e.g., the logics used in LTN’s).

However, provided that we keep the annotation functions differentiable, there

framework offers more flexibility.

Kifer and Subrahmanian 1992 show results in the general case (annotations

from arbitrary lattice structures), specifically showing that a fixpoint operator

provides exact deductive inference.

M. Kifer, V.S. Subrahmanian, Theory of Generalized Annotated Logic Programs and its Applications. Journal of Logic Programming, Elsevier, 1992.

Annotated Logic Enables Open-World
Reasoning

• Several papers have
associated logical atoms with
subsets of the [0,1] interval

• MANCaLog (Shakarian et al.,
2013) proposed that with
annotated logic for
knowledge graph reasoning

• LNN’s also use intervals
associated with logical atoms

• A key advantage over scalars
is that this approach permits
open-world novelty

True

[1,1]
False

[0,0]

Uncertain

[0,1]

P. Shakarian, G. Simari, D. Callahan. Reasoning about Complex Networks: A Logic Programming Approach. ICLP-13.

P. Shakarian, G. Simari, R. Schroeder. MANCaLog: A Logic for Multi-Attribute Network Cascades. AAMAS-13.

Neural Equivalent Architecture

• Building on ideas
from differentiable
ILP, we proposed an
architecture to
leverage annotated
logic for rule
learning

• Key idea: a
recurrent neural unit
aligns with a
deductive fixpoint
operator

P. Shakarian, G. Simari, Extensions to Generalized Annotated Logic and an Equivalent Neural Architecture, IEEE TransAI, 2022.

PyReason: Python-based temporal first-order logic explainable AI system

supporting uncertainty, open-world novelty, and graph-based reasoning.

• Supports generalized annotated logic with temporal,

graphical and uncertainty extensions, capturing a wide

variety of fuzzy, real-valued, interval, and temporal logics

• Modern Python-based system supporting reasoning on

graph-based data structures (e.g., exported from Neo4j,

GraphML, etc.)

• Rule-based reasoning in a manner that support

uncertainty, open-world novelty, non-ground rules,

quantification, etc., agnostic to selection of t-norm, etc.

• Fast, highly optimized, correct fixpoint-based deduction

allows for explainable AI reasoning, scales to graphs

with over 30 million edges

D. Aditya, K. Mukherji, S. Balasubramanian, A. Chaudhary, P. Shakarian, PyReason: Software for Open World Temporal

Logic, AAAI Spring Symposium (Mar. 2023). Accepted.

GitHub:

https://github.com/lab-v2/pyreason

Python:
pip install pyreason

https://github.com/lab-v2/pyreason

PyReason

Supports Generalized Annotated Logic

Finite-time temporal logic (e.g., as used in STLNet)

Supports inference with fuzzy operators (e.g., LTN))

Supports open world novelty and parameterized operators

(e.g., LNN)

Supports graph-based reasoning (e.g., MANCALog)

D. Aditya, K. Mukherji, S. Balasubramanian, A. Chaudhary, P. Shakarian, PyReason: Software for Open World Temporal

Logic, AAAI Spring Symposium (Mar. 2023). Accepted.

Logical Neural Networks

Papers:

Riegel, R., Gray, A., Luus, F., Khan, N., Makondo, N., Akhalwaya, I.Y.,
Qian, H., Fagin, R., Barahona, F., Sharma, U., Ikbal, S., Karanam, H.,
Neelam, S., Likhyani, A., Srivastava, S.: Logical neural networks (2020).

Sen, P., Carvalho, B.W.S.R.d., Rabdelaziz, I., Kapanipathi, P., Roukjos, S.,
Gray, A.: Logical Neural Networks for Knowledge Base Completion with
Embeddings and Rules, EMNLP (2022).

LNN’s

Key ideas:

• Each input to an operator is
associated with a parameter
(“importance weighting”)

• Forward pass is a deduction
algorithm (equivalent to the
fixpoint operator of general
annotated programs)

• Hyperparameter a sets a
threshold for truth and
falsehood

• Logic program known a priori
(like in LTN’s)

• Learning process finds
parameters such that
operators retain classical
functionality

LNN: Inference

• Input to inference:
• Set of formulas

• Initial truth bounds for each atom and formula

• Bias and weight for each formula (connector)

• Output:
• Final truth bounds for each formula and atom

• Authors propose a upward-downward pass
through the logic (this is different from forward-
backward pass used in gradient descent)

• The algorithm propagates truth values from atoms
to the formula (upward) and from the formulas to
the atoms (downward) until convergence

LNN: Activation Functions

LNN: Learning

• Neural architecture is derived directly from the a-
priori known formulas

• Historical inputs and outputs used as samples
during the training process

• Loss function depends not only on standard ML
metrics (e.g., MSE) but also the number of
inconsistencies (neurons associated with a truth
bound where L>U.

• The functions used to combine formulas are
differentiable with respect to the weights

• The forward pass of the learning process can be
done with the inference algorithm (which is
essentially a fixpoint operator)

LNN: Syntax Tree / Neural Structure

Objective Function with Constraints

• To ensure reasonable settings of parameters, the
authors show how the parameter-learning problem
can be framed as an optimization problem with
constraints

• Here, E(B,W) is the traditional loss function and the
summation is designed to reduce
the number of inconsistencies

• Some Issues: (fully listed in section F.1)
• Requirement of additional slack parameters
• Parameter updates require constraint satisfiaction
• b must be learnt for each neuron, hinders interpretability and

leads to overfitting

Formalism is from Riegel et. al, 2020 (Sec. 6)

Tailored Activation Function

Formalism is from Riegel et. al, 2020 (Sec. 6)

Shown here is a tailored activation function for disjunction with b=1.

Key advantages:

- The logic is maintained regardless of the weights

- The authors claim that the output is independent of b, so they define it

as

Overall Strategy

• Use gradient descent to find weights, using
normal back-propagation and the
aforementioned inference process for the
forward pass

• Loss function combines normal metrics (e.g.,
MSE) and a count of inconsistent neurons

Key Issues to Consider

• Parameters w and b must be set in a way such
that classical logic outcomes for the operators
behave as expected

• Learning parameters that fit vs. interpretability

Inconsistency

• Not fundamentally guaranteed

• Authors do mention that consistency check
can be done during the training process

• It is noteworthy that consistency is based on
neurons, not atoms – so for all formulas
known a-prior, you know which ones will be
inconsistent

• However, if you are checking an entailment
query against the logic, there are no
guarantees if it is correct

Recent Work

• Sen et al. (2022) extend LNN’s for rule-
learning in knowledge graphs and achieve
state-of the art performance on KBC tasks.

• Approach is complementary to embedding-
based approaches to the problem – and the
combination provides further improvement.

Differentiable Inductive Logic Programming

Paper:

Evans, R., Grefenstette, E.: Learning explanatory rules
from noisy data. J. Artif. Int. Res. 61(1), 1–64 (2018)

The Logic of dILP

First-Order Logic (predicates and constants)
• Given predicates p, q constant c and variable x

• p(c) is a ground atom

• p(x) is non-ground

• q(x) p(x) is a non-ground rule (“if p then q”)

• Each non-ground rule will have multiple
grounded instances

• Assume facts (ground atoms) and (non-ground)
rules

• Limits on the number of inference steps (i.e.,
applications of a fixpoint operator) – denoted T

ILP by SAT Solving

Intuition:

1. A “template” specifies the format of a rule (e.g., number of body predicates, free

existentially quantified variables, number of invented predicates, etc.)

2. For a given predicate, “candidate” rules are generated based on a template

3. An additional atomic proposition is added to the end of each candidate

4. Given positive and negative facts, find a subset of the propositions that “turn on”

candidate rules such that positive facts are entailed and negative facts are not

• The overall goal is to compute the following
conditional probability

• Such that the following loss is minimized

Learning Problem

Truth value for

ground atom a

Atom, value

(in {0,1})

pairs in

ground truth

Weights (learned), program

template, language, and facts

Inductive Inference by Gradient Descent

Weights associated with each

intentional predicate and pair of

templates associated with the

predicate.

Pre-Processing

Clause

Generation

Conversion of

Background

knowledge to

Vector

Representation

Vector at

Initial atom values

Vectors ct

Vectors (for each intentional predicate and pair of

templates) giving the maximum truth value to atoms

formed with each intentional predicate

Vectors bt

Vectors (for each intentional predicate) takes weighted

average for truth values of each ground atom from the

corresponding ct vectors using softmax and the

associated weights

Vector at+1

Amalgamation of vectors at and bt using probabilistic sum

Recurrence

structure
For each

inference step as

specified by

program template

hyperparameters

Overall Architecture

Bounding the Number of Templates

• A major source of complexity is the number of
templates, which can be bounded by various
quantities as follows:

• Under the assumptions in the paper, the
above bound is equal to the following:

Experimental Notes

• Training data:
• Training data consists of multiple ℬ,𝒫,𝒩 triples

• At each step, one of the triples is samples

• From the sampled triple, a mini batch of 𝒫⋃𝒩 is selected

• Authors state that this method helps escape local minima

• Training occurs in 6,000 steps

• Other notes:
• Cross-entropy loss (seen in other work as well)

• RMS Prop used as optimizer with a learning rate of 0.5

• Adam also gave reasonable results

• RMS Prop performed well with lower learning rates (e.g.,
0.01)

• Clause weights initialized from a normal distribution over the
interval [0,1] (mean zero, sd between 0 and 2)

Deep Symbolic Policy Learning

Papers:

Petersen, B.K., Larma, M.L., Mundhenk, T.N., Santiago, C.P., Kim, S.K., Kim,
J.T.: Deep symbolic regression: Recovering mathematical expressions from
data via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871 (2019)

Landajuela, M., Petersen, B.K., Kim, S., Santiago, C.P., Glatt, R., Mundhenk,
N., Pettit, J.F., Faissol, D.: Discovering symbolic policies with deep
reinforcement learning. In: International Conference on Machine Learning, pp.
5979–5989. PMLR (2021)

DSP: Motivating Example

Key idea: Understanding physical systems
based on data with compact mathematical
expressions.

Expression Tree

An expression tree is a

syntax tree for

mathematical expressions.

Unlike LNN’s where the syntax

tree is given and embedded

into the NN, in DSO/DSR we

learn the tree using an RNN in

a RL framework.

Why Symbolic Policies for Control?

• Traditional control theory and mathematical
physics approaches for control result in simple
but effective models

• Further, these models are mathematical
equations that are simple (hence regularized),
easily understood, and can be efficient to
implement

• Prior work on RL for control results in black-
box models that do not have these features

Deep Symbolic Regression

Generate distribution of

expressions with an RNN

Evaluate reward associated

with expressions based on

NRMSE to identify top

epsilon expressions

Compute gradient using top

epsilon expressions via

“risk-seeking” reward

function

Update RNN parameters

∇𝜃𝐽𝑟𝑖𝑠𝑘(𝜃; 𝜀)

1

𝜎

1

𝑛

𝑖
(𝑦𝑖 − 𝑓(𝑋𝑖))

2

Reward for Individual Expressions

Number of episodes

Time steps

in episode i

Reward for time t

in episode i

“Risk-Seeking” Policy Gradient

Risk-seeking reward function

Gradient

Standard policy gradient is based on an overall expected value

CVaR policy gradient considers only the lowest risk candidates in a given sample

(Tamar et al., 2014)

This work uses a risk-seeking policy gradient that is looking at the highest-reward

expressions

Adding Multiple Dimensions

• The authors note that multiple action
dimensions leads to a combinatorial explosion

• They overcome the problem using a non-
symbolic “anchor model”

• The intuition is that each action dimension is
learned sequentially.

• When action dimension i is learned, the algorithm
uses previously learned symbolic actions 1,…,i-1
and the anchor (non-symbolic NN-learned) actions
for i+1,…,n.

Deep Symbolic Policies

STL Net

Paper:

Ma, M., Gao, J., Feng, L., Stankovic, J.A.: Stlnet: Signal temporal logic
enforced multivariate recurrent neural networks. 34th Conference on
Neural Information Processing Systems (NeurIPS 2020).

Signal Temporal Logic (STL)

• A temporal logic (like
LTL or CTL)

• Semantic structure
assumes multiple
worlds or states over
time

• Allows for reasoning
over time intervals
(like MTL)

• Predicates represent
analog signals
meaning that they
are equivalent to the
value of a function
exceeding a certain
value (usually zero)

STL Net: Setup

• m signals over time

• Subsequence of a signal

• Model takes in “prefix” subsequences to determine the rest of the signal

• Goal: Find model parameters that both minimize loss and adhere to STL
specifications

Student-Teacher Framework

STL Loss Function

• The specialized loss function is used to compare the
result from the neural network not only with the
training data, but also with the result of the parent
network

• Hyperparameter beta measures the trade-off between
the two

hyperparameter ground truth teacher result

Adjusting Neural Network Results to Meet a
Specification

• We can think of the result of the neural model
as a sequence of worlds over time (just note
that the atoms in the worlds depend on analog
values)

• If we can express a specification in a manner
that allows us to simply compare worlds to the
spec, we can update the trace in a
straightforward manner

Key Idea: Converting Specification to
DNF Form

• Turning the specification into DNF form
(disjunction of conjunctions of literals) provides a
few useful properties:

1. Only one clause of the disjunction must be satisfied
for the specification to be satisfied (so you can just
iterate through clauses)

2. The conjunctions of literals are very easy to compare
with a world (as essentially you are just checking
every atom and negation with each world in the
sequence)

3. Changing a sequence to meet a specification
becomes trivial as you can simply modify the value
associated with a specific predicate – and you can
perform the modifications in such a way to be near
the trace (via L1) as possible

Scalability

• STLNet relies the ability to convert STL
formulas from CNF to DNF.

• However, doing so could result in an
exponentially-large formula (Miltersen et al.,
2005)

• Left alone, this could hinder the scalability of
the approach, though unde

Miltersen, P.B., Radhakrishnan, J., Wegener, I.: On converting cnf to dnf. Theoretical Computer Science 347(1), 325–335 (2005).

SATNet

Papers:

Wang, P., Donti, P.L., Wilder, B., Kolter, J.Z.: Satnet: Bridging deep learning and logical reasoning using
a differentiable satisfiability solver. In: K. Chaudhuri, R. Salakhutdinov (eds.) Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, Proceedings of Machine Learning Research, vol. 97, pp. 6545–6554.

Chang, O., Flokas, L., Lipson, H., Spranger, M.: Assessing satnet's abil- ity to solve the symbol
grounding problem. In: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin (eds.) Advances in
Neural Information Process- ing Systems, vol. 33, pp. 1428–1439. Curran Associates, Inc. (2020).

Topan, S., Rolnick, D., Si, X.: Techniques for symbol grounding with satnet. Advances in Neural
Information Processing Systems 34, 20733–20744 (2021)

The MAX SAT problem

INPUT:

Given Boolean variables 𝑥1, … , 𝑥𝑚 and causes 𝐶1, … , 𝐶𝑛 where each clause

is a disjunction of literals (atoms or negations). (Conjunctive normal form)

OUTPUT:

An assignment of Boolean variables such that the number of satisfied

clauses is maximized.

Notes:

• Known to be NP-hard (even when each clause has just two literals)

• The clauses can be numerically represented by matrix (𝑀) of dimensions

𝑛 × 𝑚 (in the original paper, 𝑆 is used instead of 𝑀)

• Often framed as an optimization problem

Sudoku can be framed as an instance of MAX

SAT with partially known Boolean variables

A visual variant of the problem is one in which

the input is presented as images instead of text.

Partial Knowledge MAX SAT variant

An extension to the problem

is to partition the 𝑚 Boolean

variables into two groups:

input (𝑎1,…,𝑘
𝑖𝑛) and output

(𝑎𝑘+1,…,𝑚
𝑜𝑢𝑡)

Hence, we can think of MAX

SAT as the following problem:

𝑎𝑘+1,…,𝑚
𝑜𝑢𝑡 = 𝑆(𝑎1,…,𝑘

𝑖𝑛 , 𝑀)

Where 𝑆 is an oracle and 𝑀 is

the matrix representing the

clauses.

SAT Net Framework

• A relaxation via Semi Definite programming is used to solve the
MAX SAT instance

• The gradient is propagated through the SATNet layers using
coordinate descent

• A relaxed constraint matrix is learned (i.e., for the approximate
solution of the problem) as opposed to interpretable constraints

• 98.3% accuracy for Sudoku, 63.2% reported accuracy for visual
case

• For the visual Sudoku problem, LeNet is used to classify the
digits (pre-trained)

Input

Discrete or

probabilistic

propositional atoms

Input Relaxation

Relax each input

into a random

unit vector

Coordinate Descent

Approximates solution to

MAXSAT using relaxed

constraint matrix

Output

Use of threshold or

randomized rounding to

produce final output

Visual Variant

• While standard CNN approach fails in visual case, SATNet approaches a
theoretical limit (based on digit accuracy) for accuracy in visual Sudoku

• Later, Chang et al. (2020) showed that SATNet leveraged label leakage. SATNet
fails catastrophically when labels are masked.

Despite its shortcomings, SAT Net has
significacne

• It successfully could learn constraints in a
differentiable framework

• Combinatorial forward pass and ability to
derive gradients for backpropagation

• Significantly outperformed standard DL
architectures

• (this was significant at the time of publication)

The relationship between symbols and
perception

• Transduction problem
• If they exist, how then, are the perceptual states mapped into

amodal symbols? (Barsalou, 1999)

• Symbol grounding problem
• The reverse of the transduction problem
• How are amodal symbols grounded in perception? (Barsalou,

1999)

• Chang et al. argue that SAT Net did not adequately
solve the symbol grounding problem.

• They probably really mean the transduction problem – as the
issue was the transduction of perception into symbols

• Note: Symbol grounding does come up in ML verification –
ensuring that a symbol maps back properly to percpetion

Unsupervised Learning to address
transduction/symbol grounding

• Topan et al., seek to directly address the
shortcomings of SAT Net:

• Use of unsupervised learning for digit recognition

• Additional loss term to account for in accurate digits

• Addition of proofreader layer improved performance (an
extra boost, but not directly related to the problem of
transduction)

More recent work

• Symbol grounding
• Abduction (Dai & Muggleton, 2021), (Dai et al.,

2019)

• Appreciation / binarized neural networks (Evans et
al., 2021)

• DeepLogic (Duan, 2022)

• Learning constraints to combinatorial
problems via deep learning

• CombOptNet (Paulus et al., 2021)

• Solver-Free (Nandawi et al., 2022)

Questions

	Default Section
	Slide 1: Advances in Neuro Symbolic Reasoning (and Learning)
	Slide 2: Overview
	Slide 3: Resources: Tutorial Web Page
	Slide 4: Resources: YouTube Channel
	Slide 5: Resources: Book
	Slide 6: Why Neuro Symbolic?
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Introduction and overview of neuro symbolic frameworks for reasoning and learning
	Slide 12: Overview

	annotated logic
	Slide 13: Generalizing Differentiable Logic with Annotated Logic
	Slide 14: Annotated Logic
	Slide 15: Annotated Logic Enables Open-World Reasoning
	Slide 16: Neural Equivalent Architecture
	Slide 17
	Slide 18: PyReason

	LNN
	Slide 19: Logical Neural Networks
	Slide 20: LNN’s
	Slide 21: LNN: Inference
	Slide 22: LNN: Activation Functions
	Slide 23: LNN: Learning
	Slide 24: LNN: Syntax Tree / Neural Structure
	Slide 25: Objective Function with Constraints
	Slide 26: Tailored Activation Function
	Slide 27: Overall Strategy
	Slide 28: Key Issues to Consider
	Slide 29: Inconsistency
	Slide 30: Recent Work

	dILP
	Slide 31: Differentiable Inductive Logic Programming
	Slide 32: The Logic of dILP
	Slide 33: ILP by SAT Solving
	Slide 34: Learning Problem
	Slide 35: Overall Architecture
	Slide 36: Bounding the Number of Templates
	Slide 37: Experimental Notes

	dsp
	Slide 38: Deep Symbolic Policy Learning
	Slide 39: DSP: Motivating Example
	Slide 40: Expression Tree
	Slide 41: Why Symbolic Policies for Control?
	Slide 42: Deep Symbolic Regression
	Slide 43: Reward for Individual Expressions
	Slide 44: “Risk-Seeking” Policy Gradient
	Slide 45: Adding Multiple Dimensions
	Slide 46: Deep Symbolic Policies

	stlnet
	Slide 47: STL Net
	Slide 48: Signal Temporal Logic (STL)
	Slide 49: STL Net: Setup
	Slide 50: Student-Teacher Framework
	Slide 51: STL Loss Function
	Slide 52: Adjusting Neural Network Results to Meet a Specification
	Slide 53: Key Idea: Converting Specification to DNF Form
	Slide 54: Scalability

	satnet
	Slide 55: SATNet
	Slide 56: The MAX SAT problem
	Slide 57: Partial Knowledge MAX SAT variant
	Slide 58: SAT Net Framework
	Slide 59: Visual Variant
	Slide 60: Despite its shortcomings, SAT Net has significacne
	Slide 61: The relationship between symbols and perception
	Slide 62: Unsupervised Learning to address transduction/symbol grounding
	Slide 63: More recent work
	Slide 64: Questions

