Advances in Neuro Symbolic Reasoning

Gerardo I. Simari

Universidad Nacional del Sur in Bahia Blanca
CONICET

AAAIl 2023, Tutorial Section

mailto:gis@cs.uns.edu.ar

Overview

Embedding-based approaches:
* LTNSs: Logic Tensor Networks

 RRNs: Recursive Reasoning Networks (a.k.a. Deep
Ontological Networks)

 NeuPSL: Neural Probabilistic Soft Logic

LTNs: Introduction

* Logic Tensor Networks (LTN) is a recently-developed NSR
framework based on fuzzy differentiable logic.

« Supports tasks based on manipulating data and knowledge.

It has been shown to effectively tackle many tasks that are
central to intelligent systems:

— multi-label classification,

— relational learning,

— data clustering,

— semi-supervised learning,
— regression,

— embedding learning, and

— guery answering under uncertainty.

LTNs: Overview

* Real Logic

— Tensors
— Groundings
— Fuzzy operators

* Logic Tensor Networks

— From Real Logic to LTN
— LTN Tasks
— Use Cases

* Bonus: Differentiable Fuzzy Logic

Real Logic: Introduction

LTN uses an infinitely-valued fuzzy logical language called Real
Logic as the underlying formalism:

« Domains are interpreted concretely by tensors in the Real field.

* Recall that tensors are algebraic objects that include:

— Scalars: 0-dimensional,

— Vectors: 1-dimensional,

— Matrices: 2-dimensional,

— as well as higher-dimension structures.

« To emphasize this, the authors use the term “grounding’,
denoted with the letter &, instead of “interpretation” (the usual
name for this concept in logic).

Source:

https://github.com/logictensornetworks/

Real Logic: Introduction (cont.)

LTN uses an infinitely-valued fuzzy logical language called Real
Logic as the underlying formalism:

« Grounding B maps:
— Terms to tensors of real numbers, and
— Formulas to real numbers in the interval [0,1].

« We commonly use "tensor" to abbreviate the expression "tensor
In the Real field".

« As usual, the language allows for logical connectives and
guantifiers.

Source:

https://github.com/logictensornetworks/

Real Logic: Language

Constants:

. C .5mlE - @nd
Denote individuals from a space of tensors Unl...nd B nt (from
now on, we write “tensor of any rank” to denote this expression).

« The individual can be pre-defined (data point) or learnable
(embedding).

* Intuition: Each dimension corresponds to a feature, and the number
corresponds to the value of that feature for that individual.

Variables denote sequences of individuals:
« Sequences represent the possible values that the variable can take.

« They can contain more than one instance of the same value.

Source:

https://github.com/logictensornetworks/

Real Logic: Language (cont.)

Functions:

« Can be any mathematical function (either pre-defined or
learnable).

« Examples of functions are distance functions, regressors, etc.

Predicates:

« Represented as mathematical functions that map an n-ary domain
of individuals to a real in [0,1], interpreted as a truth degree.

« Examples of predicates: similarity measures, classifiers, etc.

Source:

https://github.com/logictensornetworks/

Real Logic: Grounding of Functions and Predicates

G(xz) = (vi,ve,v3)

G(y) = (w1, ws)

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Real Logic: Language (cont.)

Connectives are modeled using fuzzy semantics:
« Conjunction (A): t-norm T

« Disjunction (v): t-conorm S

« Implication (&): fuzzy implication |

* Negation (-): fuzzy negation N

FuzzyOp € {T, S, I, N}

We will come back to these operators later when discussing differentiability.

Quantifiers are defined using aggregators (symmetric and
continuous operators)

« Existential (3): Generalization of existential quantification in FOL

« Universal (V): Generalization of universal quantification in FOL

Source:

https://github.com/logictensornetworks/

Real Logic: Common Fuzzy Operators

Name anb avb a—pC a—sC
: 1, ifa<c
Goedel min(a, b) max(a, b) ' = max(1 —a,c)
c, otherwise
1, ifa<c
Goguen/Product a-b a+b—a-b c = l—a+a-c
c» Otherwise
Lukasiewicz max(a+b—1,0) min(a + b, 1) min(l —a+c, 1) min(l —a—+c, 1)
Name I(x,y)= S-Implication R-Implication
Kleene-Dienes Iy p max(1 —x, y) S=Su -
N = Ns
1 <
Goedel I¢ { C ST - T =Ty
y, otherwise
Reichenbach Ig 1—x+xy S=Sp -
N = Ng
1 <
Goguen Ip > ASY _ - T=Tp
v/x, otherwise
Lukasiewicz I min(l—x+y,1) S5=5; T=T;

N = Ng

Source:

https://github.com/logictensornetworks/

Real Logic: Common Fuzzy Operators

Some possible aggregators for fuzzy universal quantification:

A7y (X1, .o, Xp) =min(xy, ..., Xp) (Minimum)
n
Arp (X1, ..., Xp) :l_[X,' (PrOdUCt)
i=1
n
AT (X1, ..., Xn) =max[Zx,- —n+1,0) (Lukasiewicz)

=1
Some possible aggregators for fuzzy existential quantification:

Asy (X1, ..., Xp) =max(Xy,....Xp) (Maximum)
n
As,(x1..... xn) =1—]](1—x) (Probabilistic Sum)
i=1
n
As (X1,Xp) :min(z xi, 1) (Lukasiewicz)

i=1

Source:

https://github.com/logictensornetworks/

Real Logic: Conjunction

G(x) ”“ G(p(z)) .

A N

— A —

| [}ﬁ - G(p(z) A q(y))
k3

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Real Logic: Quantification

G(z)
: & O
T Y
ri] O <&
—— 1 | G(p(z,y)) G(3z(p(z,v))) G(Vy(Fz(p(=z,9))))
G(y)

Note: Depending on the properties that the aggregation operators enjoy,
the semantics may or may not adequately generalize that of FOL.

(For instance, commutativity of quantifiers may not be guaranteed.)

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Real Logic: Language (cont.)

Diagonal quantification:

« Diag(xy, ..., X;,) quantifies over specific tuples s.t. the i-th tuple contains
the iI-th instance of each of the variables in the argument of Diag.

« Assumes that all variables in the argument are grounded onto
sequences with the same number of instances.

Guarded quantification:

« Quantifies over a subset of variables that satisfy a condition m (mask)

« Definition:

. def S

G(Q X1y ove s Xp im(X1y oy X0) (D) g0y = Agg(Q) G(D)iy....ip.ips memin
i1=1,...,|G(x1)]
ip=1.....|G(xp)] s.t.

Q{m}{ijfxﬂrl ----- G (Xn)iy)

Source:

https://github.com/logictensornetworks/

Real Logic: Diagonal Quantification

A NS

. . G(Diag(z1,) (p(x1, 7)) 9(Y Diagl(ar, 22)
G(xa) J B (p(z1,22)))

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Real Logic: Guarded Quantification

mask :

G(z) age(z) > age(y)

| e G(Vy (3z :
F— G(p(z,9)) G(3x age(z) > age(y): age(z) > age(y)
o~ (p(z,v))) (p(z,v))))

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

From Real Logic to Logic Tensor Networks

« Up to now, we have presented a kind of fuzzy logic —
where do we go from here?

« Towards a machine learning setup:

* Objects are represented by points in a feature
space.

* Functions and predicates are learnable.

 Let’s illustrate this with some examples...

From Real Logic to Logic Tensor Networks

If R denotes the predicate Friends, and A denotes the predicate
Italian, the following computational graph translates the sentence
“everybody has a friend who is Italian”:

Satisfaction
x level
R(z,y) < > < : > .

R(z,y) N A(y) Jy(R(z,y) A A(y)) Vz(Fy(R(z,y) A Aly)))

-
4

Source:

https://github.com/logictensornetworks

From Real Logic to Logic Tensor Networks

Va3y(P(z,y) A Q(y))

T
Tensor

P
Neural Network

Tprod (u, V)
= u-v
. dims : !
{Dx X0y X1} ,Z. A)
|
dims :
N, X ny X1

Source:

https://github.com/logictensornetworks

From Real Logic to Logic Tensor Networks

* This Iis powerful because the NN can be used to learn
the membership function for the corresponding
concept.

* The underlying feature space can be based on features
extracted from training data.

 In summary, the symbolic-subsymbolic connection is:

— Subsymbolic: Weights in a neural network that classifies
objects, parameters in regressors, etc.

— Symbolic: information in rules such as “smoking causes
cancer’.

From Real Logic to Logic Tensor Networks

Intuitions:

 When we observe a new object, we can use the NNs
to classify it, and then reason using the formulas.

« Furthermore, rules can be leveraged for learning NN
parameters; for instance:

— First optimize the weights of the “smoker” network so that it
correctly classifies individuals w.r.t. their smoker status.

— But also take into account fuzzy formula smokes(x) —
cancer(x) so that it is true for all points x in the feature space.

— Rules thus provide additional constraints.

LTN: Tasks

In Real Logic, one can define the tasks of:

« Learning: The task of making generalizations from specific
observations obtained from data (often called inductive inference)

 Reasoning: The task of deriving what knowledge follows from
the facts that are currently known.

 Query answering (QA): The task of evaluating the truth value of
a certain logical expression (query), or finding the set of objects in
the data that evaluate a certain expression to true.

To discuss these tasks, we first need to discuss which types of
knowledge can be represented in Real Logic.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Representing Knowledge with Real Logic

 Groundings are an integral part of the knowledge
represented by Real Logic.

 The connection between the symbols and the
domain is represented explicitly in the language by a
grounding

 An RL knowledge base is thus defined by formulas
of the logical language and knowledge about the
domain in the form of groundings obtained from data.

* There are several types of knowledge that can be
represented in Real Logic.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Knowledge through symbol groundings

« Knowledge through symbol groundings:

— Boundaries for domain grounding

— Explicit definition of grounding for symbols

— Parametric definition of grounding for symbols
« Knowledge through formulas:

— Factual propositions

— Generalized propositions

« Knowledge through fuzzy semantics

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

LTN Satisfiability

« AReal Logictheory@ = (@, B&(.|[E), &) has three components:

— Knowledge about the grounding of symbols (domains, constants,
variables, functions, and predicate symbols);

— a set of closed logical formulas describing factual propositions and
general knowledge;

— operators and the hyperparameters used to evaluate each
formula.

« Learning and reasoning in a Real Logic theory are both
associated with searching for and applying the set of values of
parameters B from the hypothesis space [that maximize the
satisfaction of the formulas in [.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

LTN Satisfiability

* We use the term grounded theory, denoted by BB, 7, to refer
to a Real Logic theory with a specific set of learned parameter
values.

» To define this optimization problem, we aggregate the truth
values of all the formulas in & by selecting a formula
aggregating operator:

SatAgg:[0,1] = [0,1]

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

LTN Learning

« Given a Real Logic theory & = (&, B(.|R), @), learning is the
process of searching for the set of parameter values &~ that
maximize the satisfiability of @ w.r.t. a given aggregator:

0* = argmax SatAgg Gy (o)
HcO ek

« With this general formulation, one can learn the grounding of
constants, functions, and predicates:

— Learning grounding of constants corresponds to learning of embeddings.

— Learning grounding of functions corresponds to learning generative models
or a regression task.

— Learning of the grounding of predicates corresponds to a classification task.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

LTN Querying

« Given a grounded theory, QA allows one to check if a
certain fact is true (rather, by how much it is true).

* Various types of queries can be asked:

— Truth queries: What is the truth value of a formula in the
language? If the formula is closed, we get a scalar, if it has n
free variables, we get a tensor of order n.

— Value queries: What is the value of a term in the language?
Analogous to truth queries.

— Generalization truth queries: What is the truth value
associated to a formula evaluated over unseen data?

— Generalization value queries: Analogous

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

LTN Reasoning

 Reasoning is the task of verifying if a formula is a
logical consequence of a set of formulas.

« Aformula ¢ Is a fuzzy logical consequence of a finite
set of formulas & iff every model of & is a model of ¢.

* In Real Logic, this is generalized by defining an
interval [g, 1] with 0.5 < g < 1 and assuming that a
formula is true Iiff its truth-value is in the interval [g, 1].

« Unfortunately, this definition is only useful in theory
since it requires inspecting potentially infinite sets of
groundings.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

LTN Approximate Reasoning

Option 1: Querying after learning
« Consider only the grounded theories that maximally satisfy the given theory.

« A (likely incomplete) set of such grounded theories can be found via
multiple optimization runs.

« This is a kind of brave reasoning.

Option 2: Proof by refutation

« Search for a counterexample to the consequence.

* If no such example is found, the consequence is assumed to hold.

« The general formulation cannot be used as an objective function due to null
derivatives — see paper for a soft constraint.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Use Case: Smokers, Friends, Cancer

Let's consider the classic example introduced in the Markov Logic
Networks paper (Domingos et al., 2006):

Source:

14 people divided into two groups: {a, b, ..., h} and {i, j, ..., n}.
Within each group, there is complete knowledge about smoking habits.

In the first group, there is complete knowledge about who has and who
does not have cancer.

Knowledge about the friendship relation is complete within each group
only if symmetry is assumed (i.e., Vx,y friends(x,y) — friends(y, x)).
Otherwise, knowledge about friendship is incomplete.
Finally, general knowledge about smoking, friendship, and cancer:

— smoking causes cancet,

— friendship is normally symmetric and anti-reflexive,

— everyone has a friend, and

— smoking propagates (actively or passively) among friends.

https://github.com/logictensornetworks

Use Case: Smokers, Friends, Cancer

Language:

« LTN constants are used to denote the individuals. Each is grounded as a
trainable embedding.

« Smokes, Friends, Cancer predicates are grounded as simple MLPs.

« Allrules + facts are formulated in the knowledgebase.

« Inconsistency: for example, person f smokes, doesn’t have cancer.

* Incompleteness: for example, inter-group friendship, cancer in group 2.

Lo Friend(x,y) in Group 1 Lo Friend(x,y) in Group 2

VoTNOD QT x5
© © o o =
o N ~r o o
O T N O D Qe =
o o o o o
o N >~ o o0
o o o o o
o) » o © o

Smokes Cancer abcdefgh i j k I mn

Source:

https://github.com/logictensornetworks

Use Case: Smokers, Friends, Cancer

After training, we can:

« Test satisfiability of the axioms:

Friend(x,y) in Group 1 Friend(x,y) in Group 2

q 1.0 - 0
m
|<| 08 ¢ 0.8 0.8
i f
| 0.6 0.6 0.6
h e
¢ 0.4 d 0.4 0.4
e C
d
c 02 b 0.2 0.2
b
a a
r ; 0.0 0.0 0.0

Smokes Cancer ' a b cde f gh

* Issue queries with new formulas:
forall p: Cancer(p) -> Smokes(p): 0.96
forall p,q: (Cancer(p) or Cancer(q)) -> Friends(p,q): 0.22

Source:

https://github.com/logictensornetworks

Use Case: Smokers, Friends, Cancer

After training, we can (cont.):

* Visualize the embeddings:

Source:

Embeddings Smokes
& 2
& L e Groupl [
N Group 2] 1 -
M
CY 14 ®
T ¢ &« d . . o o
-2 -1 0 1 2 -2 -1 0
Friendships per group Cancer
2 M)
A f\ ® *
1 p
Ole
_1 - o
. : i . .. ®
-2 -1 0 1 2 -2 -1 0

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

https://github.com/logictensornetworks

RRNs / Deep Ontological Reasoning:
Overview

* |ntroduction and Motivation

* Recursive Reasoning Networks (RRNS)

— Problem Statement
— Intuitions
— Deeper Dive

* Experimental Evaluation

Introduction and Motivation

“Human-like reasoning” is one of the major goals of Al:

« Machine learning approaches typically “entertain a quite informal
notion of reasoning, which is often simply identified with a
particular kind of prediction task.”

 KR&R typically approaches reasoning as the application of some
kind of mathematical proof theory.

 Itis well known that each approach has pros and cons:

 ML: Good results on specific domains, handles noise well, scalable, but
brittle in general.

« KR&R: Expressive, correct, flexible representations, but not scalable in
general, and noise causes major issues.

 Recursive Reasoning Networks (RRN) as an NSR model.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Introduction and Motivation

Why take an ML approach to reasoning?

« Combining ML and KR&R is commonly regarded as the way
towards further progress in Al.

« Expected to allow:

« Leveraging background knowledge to address the brittleness
problem.

« Knowledge transfer
« Learning from smaller amounts of data

* Explainable symbolic inference of learned neural models

Goal: Employ SOTA techniques from DL to “manage the balancing
act” and obtain the best of both worlds.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Remarks

Ontological KBs can be seen as a way to formalize information in
terms of individuals, classes, and relations.

Knowledge graphs are special cases of such KBs:
* Individuals correspond to nodes
 Binary relations correspond to labeled directed edges

« Classes correspond to unary vertex labels

Facts in KGs are typically stated in the form of triples:

<subiject, predicate, object>

It is common to assume a fixed vocabulary, so all classes and
relations are fixed a priori.

Towards a Problem Statement

The authors consider a language based on Datalog:
— Relations have arity 1 or 2.
— No functional symbols.

— Rules with “@”" in the head are allowed and represent constraints.

Rules are of the form: @, &... A B, &

Negative constraints are of the form: &, & ... B (&, B

In both cases, @and [, ..., B, are atoms and n & 0.

Facts are rules without bodies, and literals are either facts @ or
negated facts 2.

Databases are finite sets of facts.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Datalog Ontologies: Example

Ontology: human(X) < holds(X,_) Only human beings can hold things.
object(Y) < holds(_,Y) Only objects can be held.
1 ¢— human (X) A object (X) Objects are not human beings and vice versa.
isAt(Y,Z) < holds(X,Y) A isAt(X,Z) Objects are at the same location as the one
holding them.
1L + isAt(X,Y) AisAt(X,Z) AY#Z Nobody/nothing can be at two locations at
the same time.
Facts: holds (mary,apple) Mary holds the apple.
isAt (mary,kitchen) Mary is in the kitchen.
Queries: 7human (apple) Is the apple a human being?
(Evaluates to false.)
7isAt (apple,kitchen) Is the apple in the kitchen?
(Evaluates to true.)
7isAt (mary,bedroom) Is Mary in the bedroom?

(Evaluates to false.)

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Towards a Problem Statement

* Language semantics is straightforward and defined as usual:

Herbrand interpretations

Satisfaction of rules by interpretations

Sets of rules satisfiable by interpretations (models)
Logical entailment of facts by sets of rules

Unique least satisfying interpretations (minimal models)

Negated facts derived via the (Local) Closed World Assumption defined as
usual: R iff R B @ (local variant considers “close” atoms)

Logical entailment is denoted with the symbol “

« Assume that: D is variable and of size k, & is fixed, @ is variable.

 Problem: Given a database D, a program [, and a literal &,
decide whether D & [ER.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Problem Statement

* Problem: Given a database D, a program [, and a literal &,
decide whether D B &I B3

« Solution (goal): Derive a neural network N[&,k] with binary
output that, given:

— an arbitrary D of size at most k, and
— an arbitrary literal
IS such that N[E,k] = 1 if and only if D

» Recursive Reasoning Networks (RRNs): Designed specifically
for this class of problems.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

RRN Model: Intuitions

Formal ontology reasoning is replaced with computing a learned deep
neural network called an RRN:

Every RRN is trained relative to a particular ontology — like its
counterpart, it is independent of specific facts.

The vocabulary of classes and relations in the ontology determines
the structure of the recursive layers available in the RRN.

In contrast, the rules are not provided, they must be learned from
the training data.

Application of trained model on specific facts is done in two stages:
— Generate vector representations (embeddings) for individuals in the data.

— Compute predictions for queries solely based on such embeddings.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

RRN Learning: Intuitions

Based on the idea that all the information on an individual — both
specified and inferable — can be encoded in its embedding:

« Start by randomly generating initial embeddings for all
individuals appearing in the data.

 Iterate over all input triples and update the embeddings of
individuals involved.

» This considers both the individuals’ embeddings and the
possible inferences afforded by the provided facts.

« Clearly, the process involves going through all the data multiple
times — this is essential for encoding reasoning chains.

« The process is the same as that for learning classical RNNSs.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

RRN Learning: Overview

Data Model Embeddings

#E+1 (s.p,0)

#k (s,p.0)

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

RRN Prediction: Intuition

« Learned embeddings can be used to answer atomic queries
about the data they are obtained from.

* For this purpose, the model provides multi-layer perceptrons
(MLPs) for both:

— Relations between two individuals
— Class memberships of a single individual

« This second step only “uncovers knowledge” that was encoded
during the learning process.

* The model thus allows to unravel complex relationships and
considers relations and classes simultaneously.

* Note: Triples are not treated as text — RRNs are thus agnostic to
individual names used in the database.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Model

Embeddings:
* Individuals are represented as unit vectors in @7,

« Hyperparameter d to be chosen based on the ontology:
expressiveness, vocabulary size, and number of individuals.

Update Layers:
 Need to define two kinds: relations and classes.

» Relations are in general not symmetric, so in total 4 update
layers (subject/object and positive/negative).

« The RRN's recursive layers define a gated network (a kind of
RNN): Gates control how candidate update steps are applied.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Model based on GRUs

Updating subject’'s embedding (the
one for the object’s is analogous)

Logistic function
Gate controlling how
much of the updateis —— 9P (5 o) — TV e, + Vélpeo);
applied Model parameters

One-sided updates for relations:

() ()
égl) = Rel U(Wfpes + ngeo + eSeOTqu),
() () ()
Calculation of candidate / egz) = €5+ egl) © gQP(S: 0),
update steps . (2)
e
e, = Update'? (s,0) = 32)
Bl

Simultaneous update operation:

(es,e,) = Update((s, P,0)) = (Update™ (s, 0), Update"™ (s, 0))

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Model based on GRUs

» Classes are one-sided and we don’t need a positive and
negative version, so we simply have:

g(i) = U(Y e]IKB(?:)D: Model parameters

el = ReLU(W - [e; : 1xp(i)]),

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Prediction

MLPs for computing predictions:
 Asingle MLP for all classes:

MLPplclasses) — expects a single embedding as input and returns
probabilities for the corresponding individual's membership in
each class.

* One for each relation R in the vocabulary:

« MLPW® — expects a pair of embeddings and provides a
probability for the relation to hold between the corresponding
iIndividuals.

 The negation of the relation is simply computed as
1@ MLPR)(e, e)

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Experiments: Synthetic and Real Datasets

dataset

family trees
countries (S1)
countries (S2)
countries (S3)
DBpedia

Claros
UMLS-reasoning

Synth. =

[N

Real =

+# sample KBs

train test
5,000 500
5,000 20
5,000 20
5,000 20
5,000 500
5,000 500
5,000 500

avg. ind.
per sample

23

240
240
240
200
200
60

vocabulary size
class types # relation types

2 29
3 2
3 2
3 2
101 518
33 7
127 53

avg. classes per sample | avg. relations per sample
dataset specified inferable specified inferable
(pos./neg.) (pos./neg.) |(pos./neg.) (pos./neg.)
family trees 23 / — — /23 28 /| — 240 / 16,160
countries (S1) — / — 238 / 478 820 / — 20 / 49,261
countries (S2) — = 238 / 478 782 [/ — 39 / 49,279
countries (S3) — / — 238 / 478 757 | — 68 / 49,275
DBpedia — = 183 / — 642 / — 156 / —
Claros — [/ — 1,499 / — 518 /| — 17,072 /| —
UMLS-reasoning 43 / 39 1,194 / — 28 / 44 59 / 345

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Results

dataset

family trees

| countries (S1)
countries (S2)

‘ countries (S3)
DBpedia

‘ Claros
UMLS-reasoning

spec.
classes
1.000

0.989

accuracy on

inf.

classes

1.000
1.000
1.000
1.000
0.998
0.999
0.990

spec.
relations

1.000
1.000
0.999
0.999
0.998
0.999
0.997

inf.
relations
0.999
0.999
0.999
0.999
0.989
0.996
0.997

spec.
classes
1.000

0.969

F1 score on

inf.

classes

1.000
1.000
1.000
1.000
0.997
0.999
0.994

spec.
relations

1.000
1.000
0.997
0.996
0.998
0.999
0.996

inf.
relations
0.976
0.999
0.929
0.916
0.962
0.997
0.989

Table 2: This table summarizes our experimental results. Accuracy and F1 score are re-
ported separately for class memberships and relations, and within each group, for
those triples that describe specified knowledge, that is, facts, and those that rep-
resent inferable information.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Further experiments: Tolerance to Noise

« Corrupted the test data:

— Missing information: Randomly removed one fact that could not
be inferred.

— Inconsistency: Randomly chose one fact in each test sample and
added a negated version of the same as another fact.

* Results:
— Reconstruction of missing information:
* DBpedia: 33.8%
» Claros: 38.4%

— Inconsistency:

* DBpedia: 88.4%
e Claros: 96.2%

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Further Results: #Updates and #Layers

update iters accuracy on inferable relations
fatherOf sisterOf greatGrandsonOf girlCousinOf boyFirstCousinOnceRemoved
(1 hop) (2 hops) (3 hops) (4 hops) (5 hops)
1 0.992 0.991 0.921 0.919 0.940
| 2 | 1.000 0.996 0.995 0.994 0.992
3 1.000 0.997 0.999 0.998 0.999
| 4 | 1.000 0.997 1.000 0.999 0.999
5 1.000 0.997 1.000 0.999 1.000

Table 4: The prediction accuracies for inferable relations with different predicates in the
family trees dataset after different numbers of update iterations. Bold-faced values
mark the lowest number of update iterations that allow for achieving the best

possible accuracy for a relation type.

‘ dataset family trees countries (S3) DBpedia Claros UMLS-reasoning
1 pred. layer per relation 0.999 0.999 0.997 0.989 0.996
layer for all relations 0.778 0.942 0.563 0.616 0.644

‘ 1 pred.

Table 5: The accuracies for inferable relations that were achieved with one prediction layer
per relation type on the one hand and a single prediction layer for all relations on

the other.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Probabilistic Soft Logic (PSL)

 In the same spirit as MLNs, PSL is a declarative
language to specify PGMs.

« Main features:

— Logical atoms with soft truth values in [0,1] — this means
that continuous models are required.

— Dependencies encoded via weighted first order rules
— Support for similarity functions and aggregation
— Linear (in)equality constraints

— Efficient MPE inference via continuous convex optimization

This section is based on: Kimmig, Bach, Broecheler, Huang, Getoor (2012): “A Short Introduction to Probabilistic Soft
Logic”. NIPS Workshop on Probabilistic Programming.

PSL Application: Voter Opinion Modeling

Given a social network labeled with different relationships between
nodes and how some of them voted, can we infer anything about

how the others voted?

e
o

9 ¥ ¥ X
o - o I\

spouse friend
/ carla emma

colleague friend

friend SPOUsE
[J
friend
colleague
II‘I "”ZE;:;;”’ fred

Source: [Kimmig et al., 2012]

PSL Programs

Ground atoms correspond to random variables:

 friend(carla, emma),
 friend(bob, dan),
« spouse(carla, dan), ...

Soft truth value assignments:

 friend(carla, emma) = 0.9
» friend(bob, dan) =0.4

Weighted Rules:

!f,’~ []
spouse friend
—————"’—— carla emma
dan
colleague friend
[]
friend ()

?

friend

colleague

"

m

spouse

fred

?

Source: [Kimmig et al., 2012]

« Local rule: 0.3: lives(A, S) A majority(S, P) — prefers(A, P)

« Propagation rule: 0.8: spouse(B, A) A prefers(B, P) — prefers(A, P)

« Similarity rule: similarAge(B, A) A prefers(B, P) — prefers(A, P)

PSL Programs

Partial functions:

» prefers(A, dem) + prefers(A, rep) < 1.0

Sets:

 0.4: prefers(A, P) —
prefersAvg({A.friend}, P)

— A.friend: All X s.t. friend(A,X)

— Truth value of prefersAvg:
average truth value of all
atoms of the form prefers(X,P)

?

Yoy
9]

!

dan

spouse friend
————”"’— carla emma
colleague friend
(]
friend () w

friend

colleague

e

fred

m

spouse

?

Source: [Kimmig et al., 2012]

PSL: Probabilistic Model

Ground rule’s distance from satisfaction given |

\ e{1.2)
f(l) = eXp y‘ Y w,:\
reP geG(r)
/ Rule’s weight

Interpretation

Set of rule groundings

Normalization constant

7 - / e (Z S w gu))")

reP geG(r

Source: [Kimmig et al., 2012]

PSL: Probabilistic Model

Distance to satisfaction:
d.(I) = max{0, I(body) — I(head)}

« Intuitively, “if body then head” is satisfied iff the truth value of the
body is less than or equal to the truth value of the head.

« This is a generalization of classical logical implication.

In order to compute values of conjunctions and disjunctions, PSL
uses the Lukasiewicz infinite value logic operators:

(v, Av,) = max{0,I(v,) + I(v,) — 1}
I(v; Vv, =min{l, (v, + 1(v,)}
I(—lv) =1 —I(U)

PSL: Probabilistic Model

PSL programs ground out to special
kinds of MRFs called Hinge-loss MRFs.

* Nodes are continuous variables in [0,1]

» Potentials are hinge-loss functions

* Log-concave: This means that a best N
interpretation can be found tractably. oty clsid

distance from boundary

 Detalls are out of scope; interested students >
are referred to:

Bach, S. H., Broecheler, M., Huang, B., &
Getoor, L. (2017): “Hinge-loss Markov
Random Fields and Probabilistic Soft Logic”

https://math.stackexchange.com/questions/782586/how-do-you-minimize-hinge-loss

From PSL to NeuPSL

Deep Hinge-Loss Markov Random Field

Neural Inference

[0 g

S —hH—bD

x-_ur- gll"I.LIx.llll'“r'-l..]:l
e o 0

— a 0

L —'E%*E

. (B G Wan)

7) ,r], g

'\.*

I
g

Symbolic Inference

9|

y* = arg min F(-)
y

o

¢

¢
)
2

\

S

V.C(Wu.-u s Wost, y* ’ }C}

| Loss

|

»C(W“u; wpm'- y*: X)

-4

I

PSL Program

w : NEURAL(Image, , Species) /

SAMEENTITY(Image, , Image,) —

CLASS(Image,, Species)

e

Dataset
— __,-F'/l

 NeuPSL leverages NNs for low-level perception, integrating their
outputs into a set of symbolic potentials created by a PSL program.

* The symbolic potentials and neural networks together define a

Deep-HL-MRF that supports scalable convex joint inference.

 NeuPSL and LTNs are examples of NeSy Energy-based Models.

Source: Pryor, Dickens, Augustine, Albalak, Wang, Getoor (2022). NeuPSL: Neural Probabilistic Soft Logic. arXiv preprint arXiv:2205.14268.

Questions

Additional Material

LTNSs: Differentiable Fuzzy Logic

Differentiable Fuzzy Logic

* In presenting Real Logic and LTN, we did not give much thought to
the role of fuzzy operators in the main tasks.

« Gradient descent requires that operators be differentiable so that it
can smoothly traverse the universe of values.

* Three types of gradient problems commonly arise:

— Single-Passing: The derivatives of some operators are non-null for
only one argument. The gradients propagate to only one input at a time.

— Vanishing Gradients: Gradients vanish on some part of the domain.
Learning does not update inputs that are in the vanishing domain.

— Exploding Gradients: Large error gradients accumulate and result in
unstable updates.

Sources:
van Krieken et al. (2022). Analyzing differentiable fuzzy logic operators. Artif. Intell., 302, 103602
Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

https://github.com/logictensornetworks

Problems: Single-Passing Gradients

Some operators have gradients propagating to only one input at a time,
meaning that all other inputs will not benefit from learning at this step.

e.g. inmin(wq,...,u,).

xs = tf.constant([1.,1.,1.,0.5,0.3,0.2,0.2,0.1])

with tf.GradientTape() as tape:
tape.watch(xs)
y = forall min(xs)
res = y.numpy()
gradients = tape.gradient(y,xs).numpy()
print(res)
print(gradients)

0.1
[6. ©. ©. ©. ©. 0. B. 1.]

Source:

https://github.com/logictensornetworks

Problems: Vanishing Gradients

Some operators have vanishing gradients on some part of their domains.

e.g.inu A v = max(u +v — 1,0),ifu + v — 1 < 0, the gradients
vanish,

x1
X2

tf.constant(©.3)
tf.constant(©.5)

with tf.GradientTape() as tape:
tape.watch(x1)
tape.watch(x2)
y = and_luk(x1,x2)
res = y.numpy()
gradients = [v.numpy() for v in tape.gradient(y,[x1,x2])]
print(res)
print(gradients)

8.0
[0.0, ©.0]

Source:

https://github.com/logictensornetworks

Problems: Exploding Gradients

Some operators have exploding gradients on some part of their domains.

T

n P
e.g.inpME(uq,...,u,) =1— (l > (11— ui)P) , on the edge case
i=1

where all inputs are 1.0.

xs = tf.constant([1.,1.,1.])

with tf.GradientTape() as tape:
tape.watch(xs)
y = forall pME(xs,p=4)
res = y.numpy()
gradients = tape.gradient(y,xs).numpy()
print(res)
print(gradients)

1.8
[nan nan nan]

Source:

https://github.com/logictensornetworks

Gradient Problems: Binary Connectives

Table C.7
Gradient problems for some binary connectives. (X) means that the problem only appears on an edge
case.

Single-Passing Vanishing Exploding
Goedel (minimum)
Tm, Sm X
Ikp X
Ig X X
Goguen (product)
Tp, Sp (X)
IR (X)
Ikp X (X)
tukasiewicz
T1. 5 X
Ipuk X

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Gradient Problems: Aggregators

Table C.8
Gradient problems for some aggregators. (X) means that the problem only appears on an edge case.
Single-Passing Vanishing Exploding
Aty [Asy X
AtpAs, X
At [As, X
ApM [,J(]
ApME (X)

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Stable Configuration of Operators

The following is proposed as a stable configuration by Badreddine
et al. (2022):

» not: the standard negation - = 1 — u,

« and: the product t-norm u A v = uw,

» or: the product t-conorm (probabilistic sum)u V v = u + v — uv,

« implication: the Reichenbach implicatonu — v =1 — u + uv,

» existential quantification ("exists"): the generalized mean (p-mean)
1

n P
pM(Hl,...,‘H,n): (izﬂf) p=1,

i=1
» universal quantification ("for all"): the generalized mean of "the
deviations w.r.t. the truth” (p-mean error)

n P

pME(uq,...,u,) =1 — (i (1 — ui)p) p>1

i=1
Sources:
Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

https://github.com/logictensornetworks

Stable Configuration of Operators

Some caveats:

* The product t-norm has vanishing gradients on the edge case u = v = 0.

» The product t-conorm has vanishing gradients on the edge case u = v = 1.

« The Reichenbach implication has vanishing gradients on the edge case u = 0,v = 1.
* p-mean has exploding gradients on the edge case u; = --- = un = 0.

* p-mean error has exploding gradients on the edge case u, = - =un = 1.
These issues happen on edge cases and can be fixed using the following "trick":

« if the edge case happens when an input u is 0, we modify every input with
u=[0-¢eu+e

« if the edge case happens when an input u is 1, we modify every input with
u'=(1-¢eu

where € is a small positive value (e.g., 1e—5).

Sources:
Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

https://github.com/logictensornetworks/LTNtorch/blob/main/tutorials/2b-operators-and-gradients.ipynb

Additional Material

Deep Ontological Networks: Deeper Dive

A Deeper Dive: Setup

Recall some assumptions:

* Fixed vocabulary (everything but the data, including
individuals).

« Relations are either unary or binary.

« Databases can be seen as sets of triples:
* R(i,j) as &, R, j
* ((i) as Bi, MemberOf,

* Negated facts are simply encoded with a different relation
symbol: “BR” and “EMemberOf”.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Setup

« For every KB, we have an indicator function:

I xp : individuals(KB) — {—1,0, 1}|Cla3383(KB)|

1 if {i,MemberQf,Cy) € D,
Lxp(i)|, =4 —1 if (i, ~MemberQf,Cy) € D, and
0 otherwise.

 These vectors summarize all the information about an
individual’s class memberships given explicitly in the facts.

« The trained model over ontology & is of the form:
RRNx (D, T) =P{T is true | (X, D)}

where T =0, R, j& is an arbitrary query.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Setup

The probability distribution on the RHS expresses the model’s
belief regarding the truth of a query:

 Allows for training via cross-entropy error.

* During evaluation, queries are predicted to be true when the
probability is 50% or more.

e Truth: The authors underscore the use of this term — as opposed
to “DERERE" — since the RRN provides a prediction even if the
qguery is not provably entailed by the ontology.

Note: Training can be done using an actual DB or, if only the rules
are available, by generating a DB based on those rules.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Model

Embeddings:
* Individuals are represented as unit vectors in @7,

« Hyperparameter d to be chosen based on the ontology:
expressiveness, vocabulary size, and number of individuals.

Update Layers:
 Need to define two kinds: relations and classes.

» Relations are in general not symmetric, so in total 4 update
layers (subject/object and positive/negative).

« The RRN's recursive layers define a gated network (a kind of
RNN): Gates control how candidate update steps are applied.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Gated Recurrent Units (GRUS)

Forget gate (update gate in

: Write gate (1-update gate in
GRU terminology) Forget some GRU terminology)
\ information from , |n GRU
\ previous state ! . .
/ T 7 7 GRU equations terminology
] I /
St—1 y A / ® St

Ty = O'(WTSt_l —+ Urﬂ’)t -+ br) Zﬁgt

2t = O'(WZSt_l + U,z + bz) Ug:f;te
| St =0(W (re o S¢e—1) + Uy + b)

State
candidate
\ _ ~ Current
VSt = Zt O St—1+ (1 T Zt) O S¢ State
Information to
write (add) to

previous state

H N
’ 1 AN
Read gate (reset gate Read some information) ;
. .) New ndi
in GRU terminology) from previous state ew state candidate

{ deepsystems.ai

Source:

https://goo.gl/XodLUU

A Deeper Dive: Model

Updating subject’'s embedding (the
one for the object’s is analogous)

Logistic function
Gate controlling how
much of the updateis —— 9P (5 o) — TV e, + Vgpeo):
applied Model parameters

One-sided updates for relations:

) ()
égl) = Rel U(Wfpes + ngeo + eSeOTqu),
() () ()
~ (2 ~ (1 P
Calculation of candidate / eg) = € + eg) o g" (s,0),
update steps . (2)
€5

e, = Update'? (s,0) =

Simultaneous update operation:

(es,e,) = Update((s, P,0)) = (Update™ (s, 0), Update"™ (s, 0))

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Model

» Classes are one-sided and we don’t need a positive and
negative version, so we simply have:

g(i) = U(Y e]IKB(?:)D: Model parameters

el = ReLU(W - [e; : 1xp(i)]),
A

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

T v I - T - S - I S

e
N = O

Algorithm 1: Generating individual embeddings

Input: an ontological knowledge base KB = (X, D) with individuals(KB) = {i1,i2,...,iam},
a number of update iterations N, and (optionally) a matrix of initial embeddings E.
Output: the generated embeddings E.

if no embedding matriz E was provided then
‘ Randomly initialize E = [e;,,€i,,...,€iy]";

end

for iter=1,..., N do

foreach i € individuals(KB) do
| e; = Update(i);

end

foreach (s, P,0) € F' with P being a (possibly negated) relation type do
| es, e, = Update((s, P, 0));

end

end
return E.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Prediction

MLPs for computing predictions:
 Asingle MLP for all classes:

MLPplclasses) — expects a single embedding as input and returns
probabilities for the corresponding individual's membership in
each class.

* One for each relation R in the vocabulary:

« MLPW® — expects a pair of embeddings and provides a
probability for the relation to hold between the corresponding
iIndividuals.

 The negation of the relation is simply computed as
1@ MLPR)(e, e)

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Training

* Training is done via samples of databases (sets of facts) that
are associated with an ontology.

* Recall that only DBs are used — not rules — in training.
« Sampling can thus be used to generate DBs for training:

 Allows for a balanced use of rules

« Training can be done on facts that only appear as inferences and
not as facts in the DB.

« Though a single training example is considered at a time, since
samples are DBs, this corresponds to minibatches.

« The training procedure itself is straightforward — an overview is
included in the following slide.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Algorithm 2: RRN Training

Input: a sequence of training samples T'= (KB1, KBa, ..., KBy), where KBy, = (3, D;), and
a number of update iterations V.

1 while evaluation error has not converged do

2 Randomly shuffle T';

3 for KB, € T' do

4 Generate embedding matrix E for KBy;

5 Compute cross-entropy loss for predicting triples in KB, from E (both facts and
inferences);

6 Update model parameters to minimize the loss;

7 end

8 end

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

	Default Section
	Slide 1: Advances in Neuro Symbolic Reasoning
	Slide 2: Overview

	LTN
	Slide 3: LTNs: Introduction
	Slide 4: LTNs: Overview
	Slide 5: Real Logic: Introduction
	Slide 6: Real Logic: Introduction (cont.)
	Slide 7: Real Logic: Language
	Slide 8: Real Logic: Language (cont.)
	Slide 9: Real Logic: Grounding of Functions and Predicates
	Slide 10: Real Logic: Language (cont.)
	Slide 11: Real Logic: Common Fuzzy Operators
	Slide 12: Real Logic: Common Fuzzy Operators
	Slide 13: Real Logic: Conjunction
	Slide 14: Real Logic: Quantification
	Slide 15: Real Logic: Language (cont.)
	Slide 16: Real Logic: Diagonal Quantification
	Slide 17: Real Logic: Guarded Quantification
	Slide 18: From Real Logic to Logic Tensor Networks
	Slide 19: From Real Logic to Logic Tensor Networks
	Slide 20: From Real Logic to Logic Tensor Networks
	Slide 21: From Real Logic to Logic Tensor Networks
	Slide 22: From Real Logic to Logic Tensor Networks
	Slide 23: LTN: Tasks
	Slide 24: Representing Knowledge with Real Logic
	Slide 25: Knowledge through symbol groundings
	Slide 26: LTN Satisfiability
	Slide 27: LTN Satisfiability
	Slide 28: LTN Learning
	Slide 29: LTN Querying
	Slide 30: LTN Reasoning
	Slide 31: LTN Approximate Reasoning
	Slide 32: Use Case: Smokers, Friends, Cancer
	Slide 33: Use Case: Smokers, Friends, Cancer
	Slide 34: Use Case: Smokers, Friends, Cancer
	Slide 35: Use Case: Smokers, Friends, Cancer

	RRN (Deep Ontological Networks)
	Slide 36: RRNs / Deep Ontological Reasoning: Overview
	Slide 37: Introduction and Motivation
	Slide 38: Introduction and Motivation
	Slide 39: Remarks
	Slide 40: Towards a Problem Statement
	Slide 41: Datalog Ontologies: Example
	Slide 42: Towards a Problem Statement
	Slide 43: Problem Statement
	Slide 44: RRN Model: Intuitions
	Slide 45: RRN Learning: Intuitions
	Slide 46: RRN Learning: Overview
	Slide 47: RRN Prediction: Intuition
	Slide 48: A Deeper Dive: Model
	Slide 49: A Deeper Dive: Model based on GRUs
	Slide 50: A Deeper Dive: Model based on GRUs
	Slide 51: A Deeper Dive: Prediction
	Slide 52: Experiments: Synthetic and Real Datasets
	Slide 53: Results
	Slide 54: Further experiments: Tolerance to Noise
	Slide 55: Further Results: #Updates and #Layers

	NeuPSL
	Slide 56: Probabilistic Soft Logic (PSL)
	Slide 57: PSL Application: Voter Opinion Modeling
	Slide 58: PSL Programs
	Slide 59: PSL Programs
	Slide 60: PSL: Probabilistic Model
	Slide 61: PSL: Probabilistic Model
	Slide 62: PSL: Probabilistic Model
	Slide 63: From PSL to NeuPSL
	Slide 64: Questions
	Slide 65: Additional Material
	Slide 66: Differentiable Fuzzy Logic
	Slide 67: Problems: Single-Passing Gradients
	Slide 68: Problems: Vanishing Gradients
	Slide 69: Problems: Exploding Gradients
	Slide 70: Gradient Problems: Binary Connectives
	Slide 71: Gradient Problems: Aggregators
	Slide 72: Stable Configuration of Operators
	Slide 73: Stable Configuration of Operators
	Slide 74: Additional Material
	Slide 75: A Deeper Dive: Setup
	Slide 76: A Deeper Dive: Setup
	Slide 77: A Deeper Dive: Setup
	Slide 78: A Deeper Dive: Model
	Slide 80: Gated Recurrent Units (GRUs)
	Slide 81: A Deeper Dive: Model
	Slide 82: A Deeper Dive: Model
	Slide 83: Algorithm 1: Generating individual embeddings
	Slide 84: A Deeper Dive: Prediction
	Slide 85: A Deeper Dive: Training
	Slide 86: Algorithm 2: RRN Training

