
Advances in Neuro Symbolic Reasoning

Gerardo I. Simari

Universidad Nacional del Sur in Bahía Blanca

CONICET

gis@cs.uns.edu.ar

AAAI 2023, Tutorial Section

mailto:gis@cs.uns.edu.ar

Overview

Embedding-based approaches:

• LTNs: Logic Tensor Networks

• RRNs: Recursive Reasoning Networks (a.k.a. Deep

Ontological Networks)

• NeuPSL: Neural Probabilistic Soft Logic

LTNs: Introduction

• Logic Tensor Networks (LTN) is a recently-developed NSR

framework based on fuzzy differentiable logic.

• Supports tasks based on manipulating data and knowledge.

• It has been shown to effectively tackle many tasks that are

central to intelligent systems:

– multi-label classification,

– relational learning,

– data clustering,

– semi-supervised learning,

– regression,

– embedding learning, and

– query answering under uncertainty.

LTNs: Overview

• Real Logic

– Tensors

– Groundings

– Fuzzy operators

• Logic Tensor Networks

– From Real Logic to LTN

– LTN Tasks

– Use Cases

• Bonus: Differentiable Fuzzy Logic

Real Logic: Introduction

LTN uses an infinitely-valued fuzzy logical language called Real

Logic as the underlying formalism:

• Domains are interpreted concretely by tensors in the Real field.

• Recall that tensors are algebraic objects that include:

– Scalars: 0-dimensional,

– Vectors: 1-dimensional,

– Matrices: 2-dimensional,

– as well as higher-dimension structures.

• To emphasize this, the authors use the term “grounding”,

denoted with the letter , instead of “interpretation” (the usual

name for this concept in logic).

Source: https://github.com/logictensornetworks/

https://github.com/logictensornetworks/

Real Logic: Introduction (cont.)

LTN uses an infinitely-valued fuzzy logical language called Real

Logic as the underlying formalism:

• Grounding maps:

– Terms to tensors of real numbers, and

– Formulas to real numbers in the interval [0,1].

• We commonly use "tensor" to abbreviate the expression "tensor

in the Real field".

• As usual, the language allows for logical connectives and

quantifiers.

Source: https://github.com/logictensornetworks/

https://github.com/logictensornetworks/

Real Logic: Language

Constants:

• Denote individuals from a space of tensors ڂ𝑛
1
…𝑛𝑑∈

∗ 𝑛1 … 𝑛𝑑 (from

now on, we write “tensor of any rank” to denote this expression).

• The individual can be pre-defined (data point) or learnable

(embedding).

• Intuition: Each dimension corresponds to a feature, and the number

corresponds to the value of that feature for that individual.

Variables denote sequences of individuals:

• Sequences represent the possible values that the variable can take.

• They can contain more than one instance of the same value.

Source: https://github.com/logictensornetworks/

https://github.com/logictensornetworks/

Real Logic: Language (cont.)

Functions:

• Can be any mathematical function (either pre-defined or

learnable).

• Examples of functions are distance functions, regressors, etc.

Predicates:

• Represented as mathematical functions that map an n-ary domain

of individuals to a real in [0,1], interpreted as a truth degree.

• Examples of predicates: similarity measures, classifiers, etc.

Source: https://github.com/logictensornetworks/

https://github.com/logictensornetworks/

Real Logic: Grounding of Functions and Predicates

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Real Logic: Language (cont.)

Connectives are modeled using fuzzy semantics:

• Conjunction (∧): t-norm T

• Disjunction (∨): t-conorm S

• Implication (): fuzzy implication I

• Negation (¬): fuzzy negation N

FuzzyOp ∈ {T, S, I, N}

We will come back to these operators later when discussing differentiability.

Quantifiers are defined using aggregators (symmetric and

continuous operators)

• Existential (∃): Generalization of existential quantification in FOL

• Universal (∀): Generalization of universal quantification in FOL

Source: https://github.com/logictensornetworks/

https://github.com/logictensornetworks/

Real Logic: Common Fuzzy Operators

Source: https://github.com/logictensornetworks/

https://github.com/logictensornetworks/

Real Logic: Common Fuzzy Operators

Some possible aggregators for fuzzy universal quantification:

(Minimum)

(Product)

(Lukasiewicz)

Some possible aggregators for fuzzy existential quantification:

(Maximum)

(Probabilistic Sum)

(Lukasiewicz)

Source: https://github.com/logictensornetworks/

https://github.com/logictensornetworks/

Real Logic: Conjunction

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Real Logic: Quantification

Note: Depending on the properties that the aggregation operators enjoy,

the semantics may or may not adequately generalize that of FOL.

(For instance, commutativity of quantifiers may not be guaranteed.)

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Real Logic: Language (cont.)

Diagonal quantification:

• Diag(x1, ..., xh) quantifies over specific tuples s.t. the i-th tuple contains

the i-th instance of each of the variables in the argument of Diag.

• Assumes that all variables in the argument are grounded onto

sequences with the same number of instances.

Guarded quantification:

• Quantifies over a subset of variables that satisfy a condition m (mask)

• Definition:

Source: https://github.com/logictensornetworks/

https://github.com/logictensornetworks/

Real Logic: Diagonal Quantification

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Real Logic: Guarded Quantification

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

From Real Logic to Logic Tensor Networks

• Up to now, we have presented a kind of fuzzy logic –

where do we go from here?

• Towards a machine learning setup:

• Objects are represented by points in a feature

space.

• Functions and predicates are learnable.

• Let’s illustrate this with some examples…

From Real Logic to Logic Tensor Networks

If 𝑅 denotes the predicate 𝐹𝑟𝑖𝑒𝑛𝑑𝑠, and 𝐴 denotes the predicate

𝐼𝑡𝑎𝑙𝑖𝑎𝑛, the following computational graph translates the sentence

“everybody has a friend who is Italian”:

Source: https://github.com/logictensornetworks

https://github.com/logictensornetworks

From Real Logic to Logic Tensor Networks

Source: https://github.com/logictensornetworks

https://github.com/logictensornetworks

From Real Logic to Logic Tensor Networks

• This is powerful because the NN can be used to learn

the membership function for the corresponding

concept.

• The underlying feature space can be based on features

extracted from training data.

• In summary, the symbolic-subsymbolic connection is:

– Subsymbolic: Weights in a neural network that classifies

objects, parameters in regressors, etc.

– Symbolic: information in rules such as “smoking causes

cancer”.

From Real Logic to Logic Tensor Networks

Intuitions:

• When we observe a new object, we can use the NNs

to classify it, and then reason using the formulas.

• Furthermore, rules can be leveraged for learning NN

parameters; for instance:

– First optimize the weights of the “smoker” network so that it

correctly classifies individuals w.r.t. their smoker status.

– But also take into account fuzzy formula smokes(x) →

cancer(x) so that it is true for all points x in the feature space.

– Rules thus provide additional constraints.

LTN: Tasks

In Real Logic, one can define the tasks of:

• Learning: The task of making generalizations from specific

observations obtained from data (often called inductive inference)

• Reasoning: The task of deriving what knowledge follows from

the facts that are currently known.

• Query answering (QA): The task of evaluating the truth value of

a certain logical expression (query), or finding the set of objects in

the data that evaluate a certain expression to true.

To discuss these tasks, we first need to discuss which types of

knowledge can be represented in Real Logic.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Representing Knowledge with Real Logic

• Groundings are an integral part of the knowledge

represented by Real Logic.

• The connection between the symbols and the

domain is represented explicitly in the language by a

grounding

• An RL knowledge base is thus defined by formulas

of the logical language and knowledge about the

domain in the form of groundings obtained from data.

• There are several types of knowledge that can be

represented in Real Logic.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Knowledge through symbol groundings

• Knowledge through symbol groundings:

– Boundaries for domain grounding

– Explicit definition of grounding for symbols

– Parametric definition of grounding for symbols

• Knowledge through formulas:

– Factual propositions

– Generalized propositions

• Knowledge through fuzzy semantics

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

LTN Satisfiability

• A Real Logic theory = , . ,) has three components:

– Knowledge about the grounding of symbols (domains, constants,

variables, functions, and predicate symbols);

– a set of closed logical formulas describing factual propositions and

general knowledge;

– operators and the hyperparameters used to evaluate each

formula.

• Learning and reasoning in a Real Logic theory are both

associated with searching for and applying the set of values of

parameters from the hypothesis space that maximize the

satisfaction of the formulas in .

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

LTN Satisfiability

• We use the term grounded theory, denoted by , , to refer

to a Real Logic theory with a specific set of learned parameter

values.

• To define this optimization problem, we aggregate the truth

values of all the formulas in by selecting a formula

aggregating operator:

𝑆𝑎𝑡𝐴𝑔𝑔: 0, 1
∗
→ [0, 1]

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

LTN Learning

• Given a Real Logic theory = , . ,), learning is the

process of searching for the set of parameter values
∗

that

maximize the satisfiability of w.r.t. a given aggregator:

• With this general formulation, one can learn the grounding of

constants, functions, and predicates:

– Learning grounding of constants corresponds to learning of embeddings.

– Learning grounding of functions corresponds to learning generative models

or a regression task.

– Learning of the grounding of predicates corresponds to a classification task.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

LTN Querying

• Given a grounded theory, QA allows one to check if a

certain fact is true (rather, by how much it is true).

• Various types of queries can be asked:

– Truth queries: What is the truth value of a formula in the

language? If the formula is closed, we get a scalar, if it has n

free variables, we get a tensor of order n.

– Value queries: What is the value of a term in the language?

Analogous to truth queries.

– Generalization truth queries: What is the truth value

associated to a formula evaluated over unseen data?

– Generalization value queries: Analogous

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

LTN Reasoning

• Reasoning is the task of verifying if a formula is a

logical consequence of a set of formulas.

• A formula 𝜑 is a fuzzy logical consequence of a finite

set of formulas iff every model of is a model of 𝜑.

• In Real Logic, this is generalized by defining an

interval [𝑞, 1] with 0.5 < 𝑞 < 1 and assuming that a

formula is true iff its truth-value is in the interval [𝑞, 1].

• Unfortunately, this definition is only useful in theory

since it requires inspecting potentially infinite sets of

groundings.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

LTN Approximate Reasoning

Option 1: Querying after learning

• Consider only the grounded theories that maximally satisfy the given theory.

• A (likely incomplete) set of such grounded theories can be found via

multiple optimization runs.

• This is a kind of brave reasoning.

Option 2: Proof by refutation

• Search for a counterexample to the consequence.

• If no such example is found, the consequence is assumed to hold.

• The general formulation cannot be used as an objective function due to null

derivatives – see paper for a soft constraint.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Use Case: Smokers, Friends, Cancer

Let’s consider the classic example introduced in the Markov Logic

Networks paper (Domingos et al., 2006):

• 14 people divided into two groups: {𝑎, 𝑏, … , ℎ} and {𝑖, 𝑗, … , 𝑛}.

• Within each group, there is complete knowledge about smoking habits.

• In the first group, there is complete knowledge about who has and who

does not have cancer.

• Knowledge about the friendship relation is complete within each group

only if symmetry is assumed (i.e., ∀𝑥, 𝑦 𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑥, 𝑦) → 𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑦, 𝑥)).

Otherwise, knowledge about friendship is incomplete.

• Finally, general knowledge about smoking, friendship, and cancer:

– smoking causes cancer,

– friendship is normally symmetric and anti-reflexive,

– everyone has a friend, and

– smoking propagates (actively or passively) among friends.

Source: https://github.com/logictensornetworks

https://github.com/logictensornetworks

Use Case: Smokers, Friends, Cancer

Language:

• LTN constants are used to denote the individuals. Each is grounded as a

trainable embedding.

• Smokes, Friends, Cancer predicates are grounded as simple MLPs.

• All rules + facts are formulated in the knowledgebase.

• Inconsistency: for example, person f smokes, doesn’t have cancer.

• Incompleteness: for example, inter-group friendship, cancer in group 2.

Source: https://github.com/logictensornetworks

https://github.com/logictensornetworks

Use Case: Smokers, Friends, Cancer

After training, we can:

• Test satisfiability of the axioms:

• Issue queries with new formulas:

forall p: Cancer(p) -> Smokes(p): 0.96

forall p,q: (Cancer(p) or Cancer(q)) -> Friends(p,q): 0.22

Source: https://github.com/logictensornetworks

https://github.com/logictensornetworks

Use Case: Smokers, Friends, Cancer

After training, we can (cont.):

• Visualize the embeddings:

Source: https://github.com/logictensornetworks

https://github.com/logictensornetworks

RRNs / Deep Ontological Reasoning:
Overview

• Introduction and Motivation

• Recursive Reasoning Networks (RRNs)

– Problem Statement

– Intuitions

– Deeper Dive

• Experimental Evaluation

Introduction and Motivation

“Human-like reasoning” is one of the major goals of AI:

• Machine learning approaches typically “entertain a quite informal

notion of reasoning, which is often simply identified with a

particular kind of prediction task.”

• KR&R typically approaches reasoning as the application of some

kind of mathematical proof theory.

• It is well known that each approach has pros and cons:

• ML: Good results on specific domains, handles noise well, scalable, but

brittle in general.

• KR&R: Expressive, correct, flexible representations, but not scalable in

general, and noise causes major issues.

• Recursive Reasoning Networks (RRN) as an NSR model.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Introduction and Motivation

Why take an ML approach to reasoning?

• Combining ML and KR&R is commonly regarded as the way

towards further progress in AI.

• Expected to allow:

• Leveraging background knowledge to address the brittleness

problem.

• Knowledge transfer

• Learning from smaller amounts of data

• Explainable symbolic inference of learned neural models

Goal: Employ SOTA techniques from DL to “manage the balancing

act” and obtain the best of both worlds.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Remarks

• Ontological KBs can be seen as a way to formalize information in

terms of individuals, classes, and relations.

• Knowledge graphs are special cases of such KBs:

• Individuals correspond to nodes

• Binary relations correspond to labeled directed edges

• Classes correspond to unary vertex labels

• Facts in KGs are typically stated in the form of triples:

<subject, predicate, object>

• It is common to assume a fixed vocabulary, so all classes and

relations are fixed a priori.

Towards a Problem Statement

• The authors consider a language based on Datalog:

– Relations have arity 1 or 2.

– No functional symbols.

– Rules with “ ” in the head are allowed and represent constraints.

• Rules are of the form: 1 … n

• Negative constraints are of the form: 1 … n

In both cases, and 1, …, n are atoms and n 0.

• Facts are rules without bodies, and literals are either facts or

negated facts .

• Databases are finite sets of facts.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Datalog Ontologies: Example

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Towards a Problem Statement

• Language semantics is straightforward and defined as usual:

– Herbrand interpretations

– Satisfaction of rules by interpretations

– Sets of rules satisfiable by interpretations (models)

– Logical entailment of facts by sets of rules

– Unique least satisfying interpretations (minimal models)

– Negated facts derived via the (Local) Closed World Assumption defined as

usual: R iff R (local variant considers “close” atoms)

– Logical entailment is denoted with the symbol “ ”

• Assume that: D is variable and of size k, is fixed, is variable.

• Problem: Given a database D, a program , and a literal ,

decide whether D .

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Problem Statement

• Problem: Given a database D, a program , and a literal ,

decide whether D .

• Solution (goal): Derive a neural network N[,k] with binary

output that, given:

– an arbitrary D of size at most k, and

– an arbitrary literal

is such that N[,k] = 1 if and only if D

• Recursive Reasoning Networks (RRNs): Designed specifically

for this class of problems.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

RRN Model: Intuitions

Formal ontology reasoning is replaced with computing a learned deep

neural network called an RRN:

• Every RRN is trained relative to a particular ontology – like its

counterpart, it is independent of specific facts.

• The vocabulary of classes and relations in the ontology determines

the structure of the recursive layers available in the RRN.

• In contrast, the rules are not provided, they must be learned from

the training data.

• Application of trained model on specific facts is done in two stages:

– Generate vector representations (embeddings) for individuals in the data.

– Compute predictions for queries solely based on such embeddings.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

RRN Learning: Intuitions

Based on the idea that all the information on an individual – both

specified and inferable – can be encoded in its embedding:

• Start by randomly generating initial embeddings for all

individuals appearing in the data.

• Iterate over all input triples and update the embeddings of

individuals involved.

• This considers both the individuals’ embeddings and the

possible inferences afforded by the provided facts.

• Clearly, the process involves going through all the data multiple

times – this is essential for encoding reasoning chains.

• The process is the same as that for learning classical RNNs.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

RRN Learning: Overview

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

RRN Prediction: Intuition

• Learned embeddings can be used to answer atomic queries

about the data they are obtained from.

• For this purpose, the model provides multi-layer perceptrons

(MLPs) for both:

– Relations between two individuals

– Class memberships of a single individual

• This second step only “uncovers knowledge” that was encoded

during the learning process.

• The model thus allows to unravel complex relationships and

considers relations and classes simultaneously.

• Note: Triples are not treated as text – RRNs are thus agnostic to

individual names used in the database.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Model

Embeddings:

• Individuals are represented as unit vectors in d.

• Hyperparameter d to be chosen based on the ontology:

expressiveness, vocabulary size, and number of individuals.

Update Layers:

• Need to define two kinds: relations and classes.

• Relations are in general not symmetric, so in total 4 update

layers (subject/object and positive/negative).

• The RRN’s recursive layers define a gated network (a kind of

RNN): Gates control how candidate update steps are applied.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Model based on GRUs

One-sided updates for relations:

Simultaneous update operation:

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Updating subject’s embedding (the

one for the object’s is analogous)

Model parameters

Logistic function

Calculation of candidate

update steps

Gate controlling how

much of the update is

applied

A Deeper Dive: Model based on GRUs

• Classes are one-sided and we don’t need a positive and

negative version, so we simply have:

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Model parameters

A Deeper Dive: Prediction

MLPs for computing predictions:

• A single MLP for all classes:

MLP(classes) – expects a single embedding as input and returns

probabilities for the corresponding individual’s membership in

each class.

• One for each relation R in the vocabulary:

• MLP(R) – expects a pair of embeddings and provides a

probability for the relation to hold between the corresponding

individuals.

• The negation of the relation is simply computed as

1 MLP(R)(ei, ej)

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Experiments: Synthetic and Real Datasets

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Synth.

Real

Results

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Further experiments: Tolerance to Noise

• Corrupted the test data:

– Missing information: Randomly removed one fact that could not

be inferred.

– Inconsistency: Randomly chose one fact in each test sample and

added a negated version of the same as another fact.

• Results:

– Reconstruction of missing information:

• DBpedia: 33.8%

• Claros: 38.4%

– Inconsistency:

• DBpedia: 88.4%

• Claros: 96.2%

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Further Results: #Updates and #Layers

• ...

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Probabilistic Soft Logic (PSL)

• In the same spirit as MLNs, PSL is a declarative

language to specify PGMs.

• Main features:

– Logical atoms with soft truth values in [0,1] – this means

that continuous models are required.

– Dependencies encoded via weighted first order rules

– Support for similarity functions and aggregation

– Linear (in)equality constraints

– Efficient MPE inference via continuous convex optimization

This section is based on: Kimmig, Bach, Broecheler, Huang, Getoor (2012): “A Short Introduction to Probabilistic Soft

Logic”. NIPS Workshop on Probabilistic Programming.

PSL Application: Voter Opinion Modeling

Given a social network labeled with different relationships between

nodes and how some of them voted, can we infer anything about

how the others voted?

Source: [Kimmig et al., 2012]

PSL Programs

Ground atoms correspond to random variables:

• friend(carla, emma),

• friend(bob, dan),

• spouse(carla, dan), …

Soft truth value assignments:

• friend(carla, emma) = 0.9

• friend(bob, dan) = 0.4

Weighted Rules:

• Local rule: 0.3: lives(A, S) ∧ majority(S, P) → prefers(A, P)

• Propagation rule: 0.8: spouse(B, A) ∧ prefers(B, P) → prefers(A, P)

• Similarity rule: similarAge(B, A) ∧ prefers(B, P) → prefers(A, P)

Source: [Kimmig et al., 2012]

PSL Programs

Partial functions:

• prefers(A, dem) + prefers(A, rep) ≤ 1.0

Sets:

• 0.4: prefers(A, P) →

prefersAvg({A.friend}, P)

– A.friend: All X s.t. friend(A,X)

– Truth value of prefersAvg:

average truth value of all

atoms of the form prefers(X,P)
Source: [Kimmig et al., 2012]

PSL: Probabilistic Model

Source: [Kimmig et al., 2012]

PSL: Probabilistic Model

Distance to satisfaction:

𝑑𝑟(𝐼) = max{0, 𝐼 𝑏𝑜𝑑𝑦 − 𝐼(ℎ𝑒𝑎𝑑)}

• Intuitively, “if body then head” is satisfied iff the truth value of the

body is less than or equal to the truth value of the head.

• This is a generalization of classical logical implication.

In order to compute values of conjunctions and disjunctions, PSL

uses the Lukasiewicz infinite value logic operators:

𝐼(𝑣1 ∧ 𝑣2) = max{0, 𝐼 𝑣1 + 𝐼(𝑣2) − 1}

𝐼 𝑣1 ∨ 𝑣2 = min 1, 𝐼 𝑣1 + 𝐼 𝑣2

𝐼 ¬𝑣 = 1 − 𝐼 𝑣

PSL: Probabilistic Model

PSL programs ground out to special

kinds of MRFs called Hinge-loss MRFs.

• Nodes are continuous variables in [0,1]

• Potentials are hinge-loss functions

• Log-concave: This means that a best

interpretation can be found tractably.

• Details are out of scope; interested students

are referred to:

Bach, S. H., Broecheler, M., Huang, B., &

Getoor, L. (2017): “Hinge-loss Markov

Random Fields and Probabilistic Soft Logic”

Source:

https://math.stackexchange.com/questions/

782586/how-do-you-minimize-hinge-loss

https://math.stackexchange.com/questions/782586/how-do-you-minimize-hinge-loss

From PSL to NeuPSL

• NeuPSL leverages NNs for low-level perception, integrating their

outputs into a set of symbolic potentials created by a PSL program.

• The symbolic potentials and neural networks together define a

Deep-HL-MRF that supports scalable convex joint inference.

• NeuPSL and LTNs are examples of NeSy Energy-based Models.

Source: Pryor, Dickens, Augustine, Albalak, Wang, Getoor (2022). NeuPSL: Neural Probabilistic Soft Logic. arXiv preprint arXiv:2205.14268.

Questions

Additional Material

LTNs: Differentiable Fuzzy Logic

Differentiable Fuzzy Logic

• In presenting Real Logic and LTN, we did not give much thought to

the role of fuzzy operators in the main tasks.

• Gradient descent requires that operators be differentiable so that it

can smoothly traverse the universe of values.

• Three types of gradient problems commonly arise:

– Single-Passing: The derivatives of some operators are non-null for

only one argument. The gradients propagate to only one input at a time.

– Vanishing Gradients: Gradients vanish on some part of the domain.

Learning does not update inputs that are in the vanishing domain.

– Exploding Gradients: Large error gradients accumulate and result in

unstable updates.
Sources:

van Krieken et al. (2022). Analyzing differentiable fuzzy logic operators. Artif. Intell., 302, 103602

Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

https://github.com/logictensornetworks

https://github.com/logictensornetworks

Problems: Single-Passing Gradients

Source: https://github.com/logictensornetworks

https://github.com/logictensornetworks

Problems: Vanishing Gradients

Source: https://github.com/logictensornetworks

https://github.com/logictensornetworks

Problems: Exploding Gradients

Source: https://github.com/logictensornetworks

https://github.com/logictensornetworks

Gradient Problems: Binary Connectives

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Gradient Problems: Aggregators

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Stable Configuration of Operators

The following is proposed as a stable configuration by Badreddine

et al. (2022):

Sources:

Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

https://github.com/logictensornetworks

https://github.com/logictensornetworks

Stable Configuration of Operators

Some caveats:

• The product t-norm has vanishing gradients on the edge case 𝑢 = 𝑣 = 0.

• The product t-conorm has vanishing gradients on the edge case 𝑢 = 𝑣 = 1.

• The Reichenbach implication has vanishing gradients on the edge case 𝑢 = 0, 𝑣 = 1.

• p-mean has exploding gradients on the edge case 𝑢1 = ⋯ = 𝑢𝑛 = 0.

• p-mean error has exploding gradients on the edge case 𝑢1 = ⋯ = 𝑢𝑛 = 1.

These issues happen on edge cases and can be fixed using the following "trick":

• if the edge case happens when an input u is 0, we modify every input with

𝑢′ = (1 − 𝜖)𝑢 + 𝜖

• if the edge case happens when an input u is 1, we modify every input with

𝑢′ = (1 − 𝜖)𝑢

where 𝜖 is a small positive value (e.g., 1e−5).

Sources:

Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

https://github.com/logictensornetworks/LTNtorch/blob/main/tutorials/2b-operators-and-gradients.ipynb

https://github.com/logictensornetworks/LTNtorch/blob/main/tutorials/2b-operators-and-gradients.ipynb

Additional Material

Deep Ontological Networks: Deeper Dive

A Deeper Dive: Setup

Recall some assumptions:

• Fixed vocabulary (everything but the data, including

individuals).

• Relations are either unary or binary.

• Databases can be seen as sets of triples:

• R(i, j) as i, R, j

• C(i) as i, MemberOf, C

• Negated facts are simply encoded with a different relation

symbol: “ R” and “ MemberOf”.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Setup

• For every KB, we have an indicator function:

• These vectors summarize all the information about an

individual’s class memberships given explicitly in the facts.

• The trained model over ontology is of the form:

where T = i, R, j is an arbitrary query.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Setup

The probability distribution on the RHS expresses the model’s

belief regarding the truth of a query:

• Allows for training via cross-entropy error.

• During evaluation, queries are predicted to be true when the

probability is 50% or more.

• Truth: The authors underscore the use of this term – as opposed

to “D ” – since the RRN provides a prediction even if the

query is not provably entailed by the ontology.

Note: Training can be done using an actual DB or, if only the rules

are available, by generating a DB based on those rules.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Model

Embeddings:

• Individuals are represented as unit vectors in d.

• Hyperparameter d to be chosen based on the ontology:

expressiveness, vocabulary size, and number of individuals.

Update Layers:

• Need to define two kinds: relations and classes.

• Relations are in general not symmetric, so in total 4 update

layers (subject/object and positive/negative).

• The RRN’s recursive layers define a gated network (a kind of

RNN): Gates control how candidate update steps are applied.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Gated Recurrent Units (GRUs)

Source: https://goo.gl/XodLUU

https://goo.gl/XodLUU

A Deeper Dive: Model

One-sided updates for relations:

Simultaneous update operation:

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Updating subject’s embedding (the

one for the object’s is analogous)

Model parameters

Logistic function

Calculation of candidate

update steps

Gate controlling how

much of the update is

applied

A Deeper Dive: Model

• Classes are one-sided and we don’t need a positive and

negative version, so we simply have:

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Model parameters

Algorithm 1: Generating individual embeddings

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Prediction

MLPs for computing predictions:

• A single MLP for all classes:

MLP(classes) – expects a single embedding as input and returns

probabilities for the corresponding individual’s membership in

each class.

• One for each relation R in the vocabulary:

• MLP(R) – expects a pair of embeddings and provides a

probability for the relation to hold between the corresponding

individuals.

• The negation of the relation is simply computed as

1 MLP(R)(ei, ej)

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

A Deeper Dive: Training

• Training is done via samples of databases (sets of facts) that

are associated with an ontology.

• Recall that only DBs are used – not rules – in training.

• Sampling can thus be used to generate DBs for training:

• Allows for a balanced use of rules

• Training can be done on facts that only appear as inferences and

not as facts in the DB.

• Though a single training example is considered at a time, since

samples are DBs, this corresponds to minibatches.

• The training procedure itself is straightforward – an overview is

included in the following slide.

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

Algorithm 2: RRN Training

Source: Hohenecker, P., & Lukasiewicz, T. (2020). Ontology reasoning with deep neural networks. JAIR, 68, 503-540.

	Default Section
	Slide 1: Advances in Neuro Symbolic Reasoning
	Slide 2: Overview

	LTN
	Slide 3: LTNs: Introduction
	Slide 4: LTNs: Overview
	Slide 5: Real Logic: Introduction
	Slide 6: Real Logic: Introduction (cont.)
	Slide 7: Real Logic: Language
	Slide 8: Real Logic: Language (cont.)
	Slide 9: Real Logic: Grounding of Functions and Predicates
	Slide 10: Real Logic: Language (cont.)
	Slide 11: Real Logic: Common Fuzzy Operators
	Slide 12: Real Logic: Common Fuzzy Operators
	Slide 13: Real Logic: Conjunction
	Slide 14: Real Logic: Quantification
	Slide 15: Real Logic: Language (cont.)
	Slide 16: Real Logic: Diagonal Quantification
	Slide 17: Real Logic: Guarded Quantification
	Slide 18: From Real Logic to Logic Tensor Networks
	Slide 19: From Real Logic to Logic Tensor Networks
	Slide 20: From Real Logic to Logic Tensor Networks
	Slide 21: From Real Logic to Logic Tensor Networks
	Slide 22: From Real Logic to Logic Tensor Networks
	Slide 23: LTN: Tasks
	Slide 24: Representing Knowledge with Real Logic
	Slide 25: Knowledge through symbol groundings
	Slide 26: LTN Satisfiability
	Slide 27: LTN Satisfiability
	Slide 28: LTN Learning
	Slide 29: LTN Querying
	Slide 30: LTN Reasoning
	Slide 31: LTN Approximate Reasoning
	Slide 32: Use Case: Smokers, Friends, Cancer
	Slide 33: Use Case: Smokers, Friends, Cancer
	Slide 34: Use Case: Smokers, Friends, Cancer
	Slide 35: Use Case: Smokers, Friends, Cancer

	RRN (Deep Ontological Networks)
	Slide 36: RRNs / Deep Ontological Reasoning: Overview
	Slide 37: Introduction and Motivation
	Slide 38: Introduction and Motivation
	Slide 39: Remarks
	Slide 40: Towards a Problem Statement
	Slide 41: Datalog Ontologies: Example
	Slide 42: Towards a Problem Statement
	Slide 43: Problem Statement
	Slide 44: RRN Model: Intuitions
	Slide 45: RRN Learning: Intuitions
	Slide 46: RRN Learning: Overview
	Slide 47: RRN Prediction: Intuition
	Slide 48: A Deeper Dive: Model
	Slide 49: A Deeper Dive: Model based on GRUs
	Slide 50: A Deeper Dive: Model based on GRUs
	Slide 51: A Deeper Dive: Prediction
	Slide 52: Experiments: Synthetic and Real Datasets
	Slide 53: Results
	Slide 54: Further experiments: Tolerance to Noise
	Slide 55: Further Results: #Updates and #Layers

	NeuPSL
	Slide 56: Probabilistic Soft Logic (PSL)
	Slide 57: PSL Application: Voter Opinion Modeling
	Slide 58: PSL Programs
	Slide 59: PSL Programs
	Slide 60: PSL: Probabilistic Model
	Slide 61: PSL: Probabilistic Model
	Slide 62: PSL: Probabilistic Model
	Slide 63: From PSL to NeuPSL
	Slide 64: Questions
	Slide 65: Additional Material
	Slide 66: Differentiable Fuzzy Logic
	Slide 67: Problems: Single-Passing Gradients
	Slide 68: Problems: Vanishing Gradients
	Slide 69: Problems: Exploding Gradients
	Slide 70: Gradient Problems: Binary Connectives
	Slide 71: Gradient Problems: Aggregators
	Slide 72: Stable Configuration of Operators
	Slide 73: Stable Configuration of Operators
	Slide 74: Additional Material
	Slide 75: A Deeper Dive: Setup
	Slide 76: A Deeper Dive: Setup
	Slide 77: A Deeper Dive: Setup
	Slide 78: A Deeper Dive: Model
	Slide 80: Gated Recurrent Units (GRUs)
	Slide 81: A Deeper Dive: Model
	Slide 82: A Deeper Dive: Model
	Slide 83: Algorithm 1: Generating individual embeddings
	Slide 84: A Deeper Dive: Prediction
	Slide 85: A Deeper Dive: Training
	Slide 86: Algorithm 2: RRN Training

