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• Logic Tensor Networks
– From Real Logic to LTN
– LTN Tasks
– Use Cases

• Bonus: Differentiable Fuzzy Logic



Introduction

• Logic Tensor Networks (LTN) is a recently-developed NSR 
framework based on fuzzy differentiable logic.

• Supports tasks based on manipulating data and knowledge.

• It has been shown to effectively tackle many tasks that are 
central to intelligent systems: 

– multi-label classification, 
– relational learning, 
– data clustering, 
– semi-supervised learning, 
– regression, 
– embedding learning, and 
– query answering under uncertainty.



Logic Tensor Networks
Real Logic



Real Logic: Introduction

LTN uses an infinitely-valued fuzzy logical language called Real 
Logic as the underlying formalism:

• Domains are interpreted concretely by tensors in the Real field.

• Recall that tensors are algebraic objects that include:

– Scalars: 0-dimensional,
– Vectors: 1-dimensional,
– Matrices: 2-dimensional, 
– as well as higher-dimension structures.

• To emphasize this, the authors use the term “grounding”, 
denoted with the letter , instead of “interpretation” (the usual 
name for this concept in logic).

Source: https://github.com/logictensornetworks/



Real Logic: Introduction (cont.)

LTN uses an infinitely-valued fuzzy logical language called Real 
Logic as the underlying formalism:

• Grounding  maps:

– Terms to tensors of real numbers, and 

– Formulas to real numbers in the interval [0,1]. 

• We commonly use "tensor" to abbreviate the expression "tensor 
in the Real field".

• As usual, the language allows for logical connectives and 
quantifiers.

Source: https://github.com/logictensornetworks/



Real Logic: Language

Constants:

• Denote individuals from a space of tensors ⋃ 𝑛1´ … ´𝑛𝑑ଵ…ௗ∈�∗ (from 
now on, we write “tensor of any rank” to denote this expression). 

• The individual can be pre-defined (data point) or learnable
(embedding).

• Intuition: Each dimension corresponds to a feature, and the number 
corresponds to the value of that feature for that individual.

Variables denote sequences of individuals:

• Sequences represent the possible values that the variable can take.

• They can contain more than one instance of the same value.

Source: https://github.com/logictensornetworks/



Real Logic: Language (cont.)

Functions:

• Can be any mathematical function (either pre-defined or 
learnable).

• Examples of functions are distance functions, regressors, etc.

Predicates:

• Represented as mathematical functions that map an n-ary domain 
of individuals to a real in [0,1], interpreted as a truth degree. 

• Examples of predicates: similarity measures, classifiers, etc.

Source: https://github.com/logictensornetworks/



Real Logic: Grounding of Functions and Predicates

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Real Logic: Language (cont.)

Connectives are modeled using fuzzy semantics:
• Conjunction (∧): t-norm T

• Disjunction (∨): t-conorm S

• Implication (): fuzzy implication I

• Negation (¬): fuzzy negation NFuzzyOp ∈ {T, S, I, N}
We will come back to these operators later when discussing differentiability.

Quantifiers are defined using aggregators (symmetric and 
continuous operators)
• Existential (∃): Generalization of existential quantification in FOL

• Universal (∀): Generalization of universal quantification in FOL

Source: https://github.com/logictensornetworks/



Real Logic: Common Fuzzy Operators

Source: https://github.com/logictensornetworks/



Real Logic: Common Fuzzy Operators

Some possible aggregators for fuzzy universal quantification:

(Minimum)

(Product)

(Lukasiewicz)

Some possible aggregators for fuzzy existential quantification:

(Maximum)

(Probabilistic Sum)

(Lukasiewicz)

Source: https://github.com/logictensornetworks/



Real Logic: Conjunction

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Real Logic: Quantification

Note: Depending on the properties that the aggregation operators enjoy, 
the semantics may or may not adequately generalize that of FOL.

(For instance, commutativity of quantifiers may not be guaranteed.)
Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Real Logic: Language (cont.)

Diagonal quantification: 

• Diag(x1, ..., xh) quantifies over specific tuples s.t. the i-th tuple contains 
the i-th instance of each of the variables in the argument of Diag.

• Assumes that all variables in the argument are grounded onto 
sequences with the same number of instances.

Guarded quantification:

• Quantifies over a subset of variables that satisfy a condition m (mask)

• Definition:

Source: https://github.com/logictensornetworks/



Real Logic: Diagonal Quantification

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Real Logic: Guarded Quantification

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Logic Tensor Networks
From Real Logic to LTNs



From Real Logic to Logic Tensor Networks

• Up to now, we have presented a kind of fuzzy logic –
where do we go from here?

• Towards a machine learning setup:

• Objects are represented by points in a feature 
space.

• Functions and predicates are learnable.

• Let’s illustrate this with some examples…



From Real Logic to Logic Tensor Networks

Source: https://github.com/logictensornetworks



From Real Logic to Logic Tensor Networks

If 𝑅 denotes the predicate 𝐹𝑟𝑖𝑒𝑛𝑑𝑠, and 𝐴 denotes the predicate 𝐼𝑡𝑎𝑙𝑖𝑎𝑛, the following computational graph translates the sentence 
“everybody has a friend who is Italian”:

Source: https://github.com/logictensornetworks



From Real Logic to Logic Tensor Networks

Source: https://github.com/logictensornetworks



From Real Logic to Logic Tensor Networks

• This is powerful because the NN can be used to learn 
the membership function for the corresponding 
concept.

• The underlying feature space can be based on features 
extracted from training data. 

• In summary, the symbolic-subsymbolic connection is:
– Subsymbolic: Weights in a neural network that classifies 

objects, parameters in regressors, etc.

– Symbolic: information in rules such as “smoking causes 
cancer”.



From Real Logic to Logic Tensor Networks

Intuitions:

• When we observe a new object, we can use the NNs 
to classify it, and then reason using the formulas.

• Furthermore, rules can be leveraged for learning NN 
parameters; for instance:

– First optimize the weights of the “smoker” network so that it 
correctly classifies individuals w.r.t. their smoker status.

– But also take into account fuzzy formula smokes(x) → 
cancer(x) so that it is true for all points x in the feature space. 

– Rules thus provide additional constraints.



LTN: Tasks

In Real Logic, one can define the tasks of:

• Learning: The task of making generalizations from specific 
observations obtained from data (often called inductive inference)

• Reasoning: The task of deriving what knowledge follows from 
the facts that are currently known.

• Query answering (QA): The task of evaluating the truth value of 
a certain logical expression (query), or finding the set of objects in 
the data that evaluate a certain expression to true.

To discuss these tasks, we first need to discuss which types of 
knowledge can be represented in Real Logic.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Representing Knowledge with Real Logic

• Groundings are an integral part of the knowledge 
represented by Real Logic.

• The connection between the symbols and the 
domain is represented explicitly in the language by a 
grounding 

• An RL knowledge base is thus defined by formulas 
of the logical language and knowledge about the 
domain in the form of groundings obtained from data. 

• There are several types of knowledge that can be 
represented in Real Logic.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through symbol groundings

Boundaries for domain grounding: 

• Constraints specifying that the value of a certain 
logical expression must be within a certain range.

• For instance:
– Elements of a domain “color” grounded onto points in [0,1]3

encoding RGB values.

– The range of a function:

age(x) as integers between 0 and 100.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through symbol groundings

Explicit definition of grounding for symbols:
• Knowledge can be more strictly incorporated by fixing the 

grounding of some symbols.

• If a constant 𝑐 denotes an object with known features 𝑣𝑐 ∈ 𝑛, we can fix its grounding  𝑐 = 𝑣𝑐.
• For instance:

– Each element in a training data set.
– Predicate encoding similarity conditions grounded using a specific 

function (say, cosine distance).
– Output layer of the NN associated with a multi-class single-label 

predicate P(x, 𝑐𝑙𝑎𝑠𝑠) can be a softmax function normalizing the 
output such that it guarantees exclusive classification.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through symbol groundings

Parametric definition of grounding for symbols:
• Here, the exact grounding of a symbol σ is not known, but it is 

known that it can be obtained by finding a set of real-valued 
parameters (i.e., via learning).

• The typical example of parametric grounding for constants is the 
learning of an embedding.

• As an example, consider:

– A neural network 𝑁 trained for image classification into 𝑛 classes: 
cat, dog, horse, etc. – 𝑁 takes as input a vector 𝑣 of pixel values and produces as output a 
vector 𝐲 = 𝑦𝑐𝑎𝑡, 𝑦𝑑𝑜𝑔, 𝑦ℎ𝑜𝑟𝑠𝑒, … ∈  0, 1 𝑛 such that 𝐲 = 𝑁(𝐯 |𝜃𝑁), 
where 𝑦𝑐 is the probability that input image 𝐯 is of class 𝑐.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through Formulas

Factual propositions:
• Knowledge about the properties of specific objects in the 

domain is represented, as usual, by logical propositions:

– Suppose that it is known that 𝑖𝑚𝑔1 is a number eight, 𝑖𝑚𝑔2 is a 
number nine, and 𝑖𝑚𝑔𝑛 is a number two. 

– This can be represented by adding the following facts to the 
knowledge base: 𝑛𝑖𝑛𝑒(𝑖𝑚𝑔1), 𝑒𝑖𝑔ℎ𝑡(𝑖𝑚𝑔2), ..., 𝑡𝑤𝑜(𝑖𝑚𝑔𝑛).

• Semi-supervision can be specified naturally via propositions 
containing disjunctions: 𝑒𝑖𝑔ℎ𝑡(𝑖𝑚𝑔1)  ∨ 𝑛𝑖𝑛𝑒(𝑖𝑚𝑔1), which states 
that 𝑖𝑚𝑔1 is either an eight or a nine (or both).

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through Formulas

Factual propositions (cont.):
• Relational learning can be achieved by logically relating 

multiple objects (defined as constants or variables, or even as 
more complex sequences of terms):𝑛𝑖𝑛𝑒 𝑖𝑚𝑔1 → ¬𝑛𝑖𝑛𝑒 𝑖𝑚𝑔2

“if 𝑖𝑚𝑔1 is a nine then 𝑖𝑚𝑔2 is not a nine”𝑛𝑖𝑛𝑒 𝑖𝑚𝑔 → ¬𝑒𝑖𝑔ℎ𝑡 𝑖𝑚𝑔
“if 𝑖𝑚𝑔 is a nine then it is not an eight”

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through Formulas

Generalized propositions:
• General knowledge about all or some of the objects of some 

domains can be specified in Real Logic by using first-order logic 
formulas with quantified variables.

• This type of knowledge allows one to specify arbitrary
constraints on the groundings independently from the specific 
data available.

• For example, the formula could be used to encode the soft 
constraint that friends of smokers are normally smokers: ∀𝑥𝑦 ((𝑠𝑚𝑜𝑘𝑒𝑠(𝑥)  ∧ 𝑓𝑟𝑖𝑒𝑛𝑑(𝑥, 𝑦))  → 𝑠𝑚𝑜𝑘𝑒𝑠(𝑦))

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



• The grounding of a formula φ depends on the operators 
approximating the connectives and quantifiers that appear in φ.

• Different operators give different interpretations of the 
satisfaction associated with the formula. 

• For instance, the operator 𝐴𝑝𝑀𝐸(𝑎1, … , 𝑎𝑛) that approximates 
universal quantification can be seen as a smooth minimum:

– It depends on a hyperparameter 𝑝 (the exponent in the gen. mean).

– If 𝑝 = 1 then 𝐴𝑝𝑀𝐸(𝑎1, … , 𝑎𝑛) corresponds to the arithmetic mean. 

– As 𝑝 increases, given the same input, the value of the universally 
quantified formula will decrease as 𝐴𝑝𝑀𝐸 converges to the min 
operator.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Knowledge through fuzzy semantics: 
Definition for operators



• The grounding of a formula φ depends on the operators 
approximating the connectives and quantifiers that appear in φ.

• Different operators give different interpretations of the satisfaction
associated with the formula. 

• For instance, the operator 𝐴𝑝𝑀𝐸(𝑎1, … , 𝑎𝑛) that approximates 
universal quantification can be seen as a smooth minimum:(cont.):

– To define how strictly the universal quantification should be interpreted 
in each proposition, one can use different values of 𝑝 for different 
propositions of the knowledge base. 

– For instance, a formula ∀𝑥 𝑃(𝑥) where 𝐴𝑝𝑀𝐸 is used with a low value for 𝑝 will denote that 𝑃 holds for some 𝑥, whereas a formula ∀𝑥 𝑄(𝑥) with a 
higher 𝑝 may denote that 𝑄 holds for most 𝑥.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

Knowledge through fuzzy semantics: 
Definition for operators



LTN Satisfiability

• A Real Logic theory  =  ,   .  q , Q) has three components:

– Knowledge about the grounding of symbols (domains, constants, 
variables, functions, and predicate symbols); 

– a set of closed logical formulas describing factual propositions and 
general knowledge; 

– operators and the hyperparameters used to evaluate each 
formula.

• Learning and reasoning in a Real Logic theory are both 
associated with searching for and applying the set of values of 
parameters q from the hypothesis space Q that maximize the 
satisfaction of the formulas in . 

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN Satisfiability

• We use the term grounded theory, denoted by á,qñ, to refer 
to a Real Logic theory with a specific set of learned parameter 
values.

• To define this optimization problem, we aggregate the truth 
values of all the formulas in  by selecting a formula 
aggregating operator:𝑆𝑎𝑡𝐴𝑔𝑔: 0, 1 ∗→ [0, 1]

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN Learning

• Given a Real Logic theory  =  ,   .  q , Q), learning is the 
process of searching for the set of parameter values q ∗ that 
maximize the satisfiability of  w.r.t. a given aggregator:

• With this general formulation, one can learn the grounding of 
constants, functions, and predicates:

– Learning grounding of constants corresponds to learning of embeddings.

– Learning grounding of functions corresponds to learning generative models 
or a regression task.

– Learning of the grounding of predicates corresponds to a classification task.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN Querying

• Given a grounded theory, QA allows one to check if a 
certain fact is true (rather, by how much it is true).

• Various types of queries can be asked:
– Truth queries: What is the truth value of a formula in the 

language? If the formula is closed, we get a scalar, if it has n 
free variables, we get a tensor of order n.

– Value queries: What is the value of a term in the language? 
Analogous to truth queries.

– Generalization truth queries: What is the truth value 
associated to a formula evaluated over unseen data?

– Generalization value queries: Analogous
Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN Reasoning

• Reasoning is the task of verifying if a formula is a 
logical consequence of a set of formulas.

• A formula 𝜑 is a fuzzy logical consequence of a finite 
set of formulas G iff every model of G is a model of 𝜑.

• In Real Logic, this is generalized by defining an 
interval [𝑞, 1] with 0.5 < 𝑞 < 1 and assuming that a 
formula is true iff its truth-value is in the interval [𝑞, 1].

• Unfortunately, this definition is only useful in theory 
since it requires inspecting potentially infinite sets of 
groundings.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN Approximate Reasoning

Option 1: Querying after learning

• Consider only the grounded theories that maximally satisfy the given theory.

• A (likely incomplete) set of such grounded theories can be found via 
multiple optimization runs.

• This is a kind of brave reasoning.

Option 2: Proof by refutation

• Search for a counterexample to the consequence.

• If no such example is found, the consequence is assumed to hold.

• The general formulation cannot be used as an objective function due to null 
derivatives – see paper for a soft constraint.

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Approx. Reasoning: Option 1 vs. 2 for ?

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Logic Tensor Networks
Use Cases



Use Case: Complex queries to interpret data and 
models – Multiclass multilabel classification

FL: frontal lip of carapace (mm)
RW: rear width of carapace (mm)
CL: length along the midline of carapace (mm)
CW: maximum width of carapace (mm)
BD: body depth (mm)

Source: https://github.com/logictensornetworks

Full example: 
https://nbviewer.org/github/logictensornetworks/logictensorn
etworks/blob/master/examples/multiclass_classification/mult
iclass-multilabel.ipynb

Data: https://www.stats.ox.ac.uk/pub/PRNN/



Use Case: Learning using satisfaction of symbolic rules 
as an objective – Clustering

Source: https://github.com/logictensornetworks

Full example: 
https://nbviewer.org/github/logictensornetworks/logicte
nsornetworks/blob/master/examples/clustering/clusteri
ng.ipynb



Use Case: Smokers, Friends, Cancer

Let’s consider the classic example introduced in the Markov Logic 
Networks paper (Domingos et al., 2006):

• 14 people divided into two groups: {𝑎, 𝑏, … , ℎ} and {𝑖, 𝑗, … , 𝑛}.
• Within each group, there is complete knowledge about smoking habits.
• In the first group, there is complete knowledge about who has and who 

does not have cancer.
• Knowledge about the friendship relation is complete within each group 

only if symmetry is assumed (i.e., ∀𝑥, 𝑦 𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑥, 𝑦) → 𝑓𝑟𝑖𝑒𝑛𝑑𝑠(𝑦, 𝑥)). 
Otherwise, knowledge about friendship is incomplete.

• Finally, general knowledge about smoking, friendship, and cancer: 
– smoking causes cancer, 
– friendship is normally symmetric and anti-reflexive, 
– everyone has a friend, and 
– smoking propagates (actively or passively) among friends.

Source: https://github.com/logictensornetworks



Use Case: Smokers, Friends, Cancer
Language:
• LTN constants are used to denote the individuals. Each is grounded as a 

trainable embedding.
• Smokes, Friends, Cancer predicates are grounded as simple MLPs.
• All rules + facts are formulated in the knowledgebase.
• Inconsistency: for example, person f smokes, doesn’t have cancer.
• Incompleteness: for example, inter-group friendship, cancer in group 2.

Source: https://github.com/logictensornetworks



Use Case: Smokers, Friends, Cancer

After training, we can:
• Test satisfiability of the axioms:

• Issue queries with new formulas:

forall p: Cancer(p) -> Smokes(p): 0.96

forall p,q: (Cancer(p) or Cancer(q)) -> Friends(p,q): 0.22

Source: https://github.com/logictensornetworks



Use Case: Smokers, Friends, Cancer

After training, we can (cont.):
• Visualize the embeddings:

Source: https://github.com/logictensornetworks



Logic Tensor Networks
Discussion



LTN within the Kautz Taxonomy
According to Kautz, LTN fall within the Neuro_{Symbolic} category:

• These architectures transform symbolic rules into templates for 
structures within the neural network:

Sources: 

https://harshakokel.com/posts/neurosymbolic-systems/

Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN within the Kautz Taxonomy
According to Kautz, LTN fall within the Neuro_{Symbolic} category:

• These architectures transform symbolic rules into templates for 
structures within the neural network.

• How is this different from category 1 (Symbolic Neuro symbolic)?

– Only the objects (individuals) are tensorized

– It’s the standard way in which deep learning approaches work: after 
processing input tensors, output tensors are produced and 
transformed back into symbols.

– LTN tensorizes all logical components: objects, predicates, functions, 
and formulas.

Sources: 

https://harshakokel.com/posts/neurosymbolic-systems/

Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN as “Informed learning with prior knowledge”

• LTN jointly min. NN loss functions and max. FOL theory satisfaction.

• This can be regarded as a semantic loss function.
Source: van Bekkum, M., de Boer, M., van Harmelen, F. et al. Modular design patterns for hybrid learning and reasoning 
systems. Appl Intell 51, 6528–6546 (2021).



Logic Tensor Networks
Differentiable Fuzzy Logic



Differentiable Fuzzy Logic
• In presenting Real Logic and LTN, we did not give much thought to 

the role of fuzzy operators in the main tasks.

• Gradient descent requires that operators be differentiable so that it 
can smoothly traverse the universe of values.

• Three types of gradient problems commonly arise:

– Single-Passing: The derivatives of some operators are non-null for 
only one argument. The gradients propagate to only one input at a time.

– Vanishing Gradients: Gradients vanish on some part of the domain. 
Learning does not update inputs that are in the vanishing domain.

– Exploding Gradients: Large error gradients accumulate and result in 
unstable updates.

Sources: 

van Krieken et al. (2022). Analyzing differentiable fuzzy logic operators. Artif. Intell., 302, 103602

Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

https://github.com/logictensornetworks



Problems: Single-Passing Gradients

Source:  https://github.com/logictensornetworks



Problems: Vanishing Gradients

Source:  https://github.com/logictensornetworks



Problems: Exploding Gradients

Source:  https://github.com/logictensornetworks



Gradient Problems: Binary Connectives

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Gradient Problems: Aggregators

Source: Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Stable Configuration of Operators
The following is proposed as a stable configuration by Badreddine
et al. (2022):

Sources: 

Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

https://github.com/logictensornetworks



Stable Configuration of Operators
Some caveats:
• The product t-norm has vanishing gradients on the edge case 𝑢 = 𝑣 = 0. 
• The product t-conorm has vanishing gradients on the edge case 𝑢 = 𝑣 = 1. 
• The Reichenbach implication has vanishing gradients on the edge case 𝑢 = 0, 𝑣 = 1. 
• p-mean has exploding gradients on the edge case 𝑢1 = ⋯ = 𝑢𝑛 = 0. 
• p-mean error has exploding gradients on the edge case 𝑢1 = ⋯ = 𝑢𝑛 = 1.

These issues happen on edge cases and can be fixed using the following "trick":

• if the edge case happens when an input u is 0, we modify every input with 𝑢′ = (1 − 𝜖)𝑢 + 𝜖
• if the edge case happens when an input u is 1, we modify every input with 𝑢′ = (1 − 𝜖)𝑢

where 𝜖 is a small positive value (e.g., 1e−5).

Sources: 

Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.

https://github.com/logictensornetworks/LTNtorch/blob/main/tutorials/2b-operators-and-gradients.ipynb




