Logic Tensor Networks

Lecture 6



Overview of this Lecture

 Real Logic

— Tensors
— Groundings
— Fuzzy operators

* Logic Tensor Networks

— From Real Logic to LTN
— LTN Tasks
— Use Cases

* Bonus: Differentiable Fuzzy Logic



Introduction

* Logic Tensor Networks (LTN) is a recently-developed NSR
framework based on fuzzy differentiable logic.

» Supports tasks based on manipulating data and knowledge.

It has been shown to effectively tackle many tasks that are
central to intelligent systems:

— multi-label classification,

— relational learning,

— data clustering,

— semi-supervised learning,

— regression,

— embedding learning, and

— query answering under uncertainty.



Logic Tensor Networks

Real Logic



Real Logic: Introduction

LTN uses an infinitely-valued fuzzy logical language called Real
Logic as the underlying formalism:

 Domains are interpreted concretely by tensors in the Real field.
* Recall that tensors are algebraic objects that include:

— Scalars: 0-dimensional,

— Vectors: 1-dimensional,

— Matrices: 2-dimensional,

— as well as higher-dimension structures.

« To emphasize this, the authors use the term “grounding’,
denoted with the letter G, instead of “interpretation” (the usual
name for this concept in logic).

Source:



Real Logic: Introduction (cont.)

LTN uses an infinitely-valued fuzzy logical language called Real
Logic as the underlying formalism:

* Grounding G maps:
— Terms to tensors of real numbers, and

— Formulas to real numbers in the interval [0,1].

« We commonly use "tensor" to abbreviate the expression "tensor
in the Real field".

» As usual, the language allows for logical connectives and
quantifiers.

Source:



Real Logic: Language

Constants:

- Denote individuals from a space of tensors U, ;R 2 (from
-
now on, we write “tensor of any rank” to denote this expression).

« The individual can be pre-defined (data point) or learnable
(embedding).

 Intuition: Each dimension corresponds to a feature, and the number
corresponds to the value of that feature for that individual.

Variables denote sequences of individuals:
« Sequences represent the possible values that the variable can take.

« They can contain more than one instance of the same value.

Source:



Real Logic: Language (cont.)

Functions:

« Can be any mathematical function (either pre-defined or
learnable).

» Examples of functions are distance functions, regressors, etc.

Predicates:

» Represented as mathematical functions that map an n-ary domain
of individuals to a real in [0,1], interpreted as a truth degree.

« Examples of predicates: similarity measures, classifiers, etc.

Source:



Real Logic: Grounding of Functions and Predicates

G(z) = (v1,v2,v3)

G(y) = (w1, ws)

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Real Logic: Language (cont.)

Connectives are modeled using fuzzy semantics:
« Conjunction (A): t-norm T

« Disjunction (Vv): t-conorm S

» Implication (=-): fuzzy implication |

* Negation (7): fuzzy negation N

FuzzyOp € {T, S, I, N}

We will come back to these operators later when discussing differentiability.

Quantifiers are defined using aggregators (symmetric and
continuous operators)

« Existential (3): Generalization of existential quantification in FOL

* Universal (V): Generalization of universal quantification in FOL

Source:



Real Logic: Common Fuzzy Operators

Name anb avbhb a—pgcC a—¢5C
. 1, ifa<c
Goedel min(a, b) max(a, b) ' = max(1 —a, c)
c, otherwise
1, ifagc
Goguen/Product a-b a+b—a-b c = l—a+a-c
;. Otherwise
Lukasiewicz max(a+b—1,0) min(a +b. 1) min(l —a+c, 1) min(l —a+c, 1)
Name I(x,y)= S-Implication R-Implication
Kleene-Dienes Ixp max(1l —x, y) S=5u -
N = Ns
1 <
Goedel I¢ { XSV ; T =Ty
vy, otherwise
Reichenbach Ig 1—x+xy S5=5p -
N = Ns
1 X <
Goguen [p ’ Sy _ - T=Tp
v/x, otherwise
Lukasiewicz I, min(l —x+y, 1) 5=5; T=T;

N =Ns

Source:



Real Logic: Common Fuzzy Operators

Some possible aggregators for fuzzy universal quantification:

ATy (X1, ..o, Xp) =min(xq, ..., X,) (Minimum)
n
Arp(X1,....Xp) 21_[){,' (Product)
i=1
n
AT (X1, ..., Xp) = max{Zx,- —n+1.0) (Lukasiewicz)

=1
Some possible aggregators for fuzzy existential quantification:

Asy (X1, ..., Xp) =max(X1,....Xp) (Maximum)
n
As,p (X1, ..., xp) =1— 1_[(1 —X;) (Probabilistic Sum)
i=1
n
As, (X1, ..., Xp) :min(z xi, 1) (Lukasiewicz)

i=1

Source:



Real Logic: Conjunction

o
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Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Real Logic: Quantification

G(z)
o, A AT
— T | { ¥
N P | —"'l\_/ \__y ]
— G(p(z,v)) G(Ez(p(z,y)))  G(Vy(Fz(p(z,v))))
G(y)

Note: Depending on the properties that the aggregation operators enjoy,
the semantics may or may not adequately generalize that of FOL.

(For instance, commutativity of quantifiers may not be guaranteed.)

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Real Logic: Language (cont.)

Diagonal quantification:

« Diag(xq, ..., x,) quantifies over specific tuples s.t. the i-th tuple contains
the i-th instance of each of the variables in the argument of Diag.

« Assumes that all variables in the argument are grounded onto
sequences with the same number of instances.

Guarded quantification:

* Quantifies over a subset of variables that satisfy a condition m (mask)

» Definition:
. . def >
G(Q X1,y X s M(XT, ooy X)) (D))if gy = - Agg(Q) G(D)ig,vsipsingseensin
1=1...., |G(x1)]
ip=1.....|G(x})| s.t.
GM)(GX1)iy s G Xn i)

Source:



Real Logic: Diagonal Quantification

A NS

; . G(Diag(z1,)(p(x1,22)))  9(VDiaglar, @)
G(xz) J (p(z1, 22)))

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Real Logic: Guarded Quantification

] mask :
G(z) LAELE) 2 )
— | < \ 4
--------- e G(Vy (Jz :
[ — 9l ) G(3x age(z) > age(y)} age(z) > age(y)

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Logic Tensor Networks

From Real Logic to LTNs



From Real Logic to Logic Tensor Networks

« Up to now, we have presented a kind of fuzzy logic —
where do we go from here?

» Towards a machine learning setup:

* Objects are represented by points in a feature
space.

* Functions and predicates are learnable.

 Let’s illustrate this with some examples...



From Real Logic to Logic Tensor Networks

friend(Mary, John)

Individuals are grounded with real features (e.g. vectors, matrices, ...).

e.g. G(Mary) =[6.2,1.5,...] ¢ R™

Predicates are grounded with operations (e.g. neural networks, ...)
that project in the interval [0,1].
The output denotes a satisfaction level.

e.g. G(friend) : R™ x R™ — [0, 1]

Vz(friend(John, z) — friend(Mary, z))

Connectives ( A, V, —, ) are interpreted using fuzzy semantics
e.9. 0.7 Aproqg 0.2 =0.7-0.2 =0.14

Variables are grounded as a list of i individuals
eg. ¢ € RW™

Quantifiers (', 3) are interpreted as aggregators
€.9. Vmean (0.7,0.2,...) = 2(0.7+ 0.2 +...)

Source:



From Real Logic to Logic Tensor Networks

If R denotes the predicate Friends, and A denotes the predicate
Italian, the following computational graph translates the sentence
“everybody has a friend who is Italian”:

R(z,y) @—

Satisfaction

@

l% level

[
4

Source:

J R(z,y) A A(y)

Jy(R(z,y) N Ay)) Va(Fy(R(z,y) A Aly)))



From Real Logic to Logic Tensor Networks

VeIy(P(z,y) A Q(y))

Zr
Tensor

P
Neural Network

Tensor

Mo (uy, ..., ME; (uy, ...,
Torod(u, v) o U1 uz) ot te) 1
o . 1 = 1 B
R— . u-v =(FXuf)P  =1-(3Ei(1-w)P)P
! dims : :
:11,\.><n_\.><l: () (3> \®
I-"-(l-il-xis-:-"-f E----(i'l-n-lé-:---i E""cii;l;s::""
Ny X Ny X 11 o X1 ! 1

Source:




From Real Logic to Logic Tensor Networks

* This is powerful because the NN can be used to learn
the membership function for the corresponding
concept.

* The underlying feature space can be based on features
extracted from training data.

* In summary, the symbolic-subsymbolic connection is:

— Subsymbolic: Weights in a neural network that classifies
objects, parameters in regressors, etc.

— Symbolic: information in rules such as “smoking causes
cancer’.



From Real Logic to Logic Tensor Networks

Intuitions:

 When we observe a new object, we can use the NNs
to classify it, and then reason using the formulas.

* Furthermore, rules can be leveraged for learning NN
parameters; for instance:

— First optimize the weights of the “smoker” network so that it
correctly classifies individuals w.r.t. their smoker status.

— But also take into account fuzzy formula smokes(x) —
cancer(x) so that it is true for all points x in the feature space.

— Rules thus provide additional constraints.



LTN: Tasks

In Real Logic, one can define the tasks of:

« Learning: The task of making generalizations from specific
observations obtained from data (often called inductive inference)

« Reasoning: The task of deriving what knowledge follows from
the facts that are currently known.

* Query answering (QA): The task of evaluating the truth value of
a certain logical expression (query), or finding the set of objects in
the data that evaluate a certain expression to frue.

To discuss these tasks, we first need to discuss which types of
knowledge can be represented in Real Logic.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Representing Knowledge with Real Logic

* Groundings are an integral part of the knowledge
represented by Real Logic.

 The connection between the symbols and the
domain is represented explicitly in the language by a
grounding ¢

 An RL knowledge base is thus defined by formulas
of the logical language and knowledge about the
domain in the form of groundings obtained from data.

* There are several types of knowledge that can be
represented in Real Logic.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through symbol groundings

Boundaries for domain grounding:

« Constraints specifying that the value of a certain
logical expression must be within a certain range.
* Forinstance:

— Elements of a domain “color” grounded onto points in [0,1]3
encoding RGB values.

— The range of a function:

age(x) as integers between 0 and 100.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through symbol groundings

Explicit definition of grounding for symbols:

» Knowledge can be more strictly incorporated by fixing the
grounding of some symbols.

 If a constant ¢ denotes an object with known features
v, € R*, we can fix its grounding G(c) = v,.

 For instance:

— Each element in a training data set.

— Predicate encoding similarity conditions grounded using a specific
function (say, cosine distance).

— Qutput layer of the NN associated with a multi-class single-label
predicate P(x, class) can be a softmax function normalizing the
output such that it guarantees exclusive classification.

Source: Badreddine, S., Garcez, A. D. A, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through symbol groundings

Parametric definition of grounding for symbols:

» Here, the exact grounding of a symbol o is not known, but it is
known that it can be obtained by finding a set of real-valued
parameters (i.e., via learning).

» The typical example of parametric grounding for constants is the
learning of an embedding.

* As an example, consider:

— A neural network N trained for image classification into n classes:
cat, dog, horse, etc.
- N takes as input a vector v of pixel values and produces as output a

vectory = (Veap Yaog Yhorser ) € 10,1]* such thaty = N(v |6)),
where y. is the probability that input image v is of class c.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through Formulas

Factual propositions:

» Knowledge about the properties of specific objects in the
domain is represented, as usual, by logical propositions:

— Suppose that it is known that img, is a number eight, img, is a
number nine, and img,, is @ number two.

— This can be represented by adding the following facts to the
knowledge base: nine(img,), eight(img,), ..., two(img,).

« Semi-supervision can be specified naturally via propositions
containing disjunctions: eight(img,) V nine(img,), which states
that img, is either an eight or a nine (or both).

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through Formulas

Factual propositions (cont.):

* Relational learning can be achieved by logically relating
multiple objects (defined as constants or variables, or even as
more complex sequences of terms):

nine(img,) = —nine(img,)
“if img, is a nine then img, is not a nine”
nine(img) — —eight(img)

“if img is a nine then it is not an eight”

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through Formulas

Generalized propositions:

« General knowledge about all or some of the objects of some
domains can be specified in Real Logic by using first-order logic
formulas with quantified variables.

» This type of knowledge allows one to specify arbitrary
constraints on the groundings independently from the specific
data available.

* For example, the formula could be used to encode the soft
constraint that friends of smokers are normally smokers:

Vxy ((smokes(x) A friend(x,y)) — smokes(y))

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through fuzzy semantics:
Definition for operators

« The grounding of a formula ¢ depends on the operators
approximating the connectives and quantifiers that appear in @.

 Different operators give different interpretations of the
satisfaction associated with the formula.

* Forinstance, the operator A,,,,;(a;, ..., an) that approximates
universal quantification can be seen as a smooth minimum:

— It depends on a hyperparameter p (the exponent in the gen. mean).
— Ifp =1then A,yt(a,, ...,an) corresponds to the arithmetic mean.

— As p increases, given the same input, the value of the universally
quantified formula will decrease as 4, converges to the min
operator.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Knowledge through fuzzy semantics:
Definition for operators

* The grounding of a formula ¢ depends on the operators
approximating the connectives and quantifiers that appear in @.

 Different operators give different interpretations of the satisfaction
associated with the formula.

* Forinstance, the operator A,,,;(a;, ..., an) that approximates
universal quantification can be seen as a smooth minimum:(cont.):

— To define how strictly the universal quantification should be interpreted
in each proposition, one can use different values of p for different
propositions of the knowledge base.

— For instance, a formula Vx P(x) where A, is used with a low value for
p will denote that P holds for some x, whereas a formula Vx Q(x) with a
higher p may denote that Q holds for most x.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN Satisfiability

« AReal Logictheory 7 = (IC, G(.|90), ©) has three components:

— Knowledge about the grounding of symbols (domains, constants,
variables, functions, and predicate symbols);

— a set of closed logical formulas describing factual propositions and
general knowledge;

— operators and the hyperparameters used to evaluate each
formula.

« Learning and reasoning in a Real Logic theory are both
associated with searching for and applying the set of values of
parameters 6 from the hypothesis space © that maximize the
satisfaction of the formulas in K.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN Satisfiability

» We use the term grounded theory, denoted by (K, G,), to refer
to a Real Logic theory with a specific set of learned parameter
values.

» To define this optimization problem, we aggregate the truth
values of all the formulas in K by selecting a formula
aggregating operator:

SatAgg:[0,1] = [0,1]

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN Learning

« Given a Real Logic theory 7 = (I, G(.|0), ©), learning is the
process of searching for the set of parameter values 0~ that
maximize the satisfiability of 7 w.r.t. a given aggregator:

0* = argmax SatAggGe(¢)
0cO ek

« With this general formulation, one can learn the grounding of
constants, functions, and predicates:

— Learning grounding of constants corresponds to learning of embeddings.

— Learning grounding of functions corresponds to learning generative models
or a regression task.

— Learning of the grounding of predicates corresponds to a classification task.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN Querying

« Given a grounded theory, QA allows one to check if a
certain fact is true (rather, by how much it is true).

 Various types of queries can be asked:

— Truth queries: What is the truth value of a formula in the
language? If the formula is closed, we get a scalar, if it has n
free variables, we get a tensor of order n.

— Value queries: What is the value of a term in the language?
Analogous to truth queries.

— Generalization truth queries: What is the truth value
associated to a formula evaluated over unseen data?

— Generalization value queries: Analogous

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN Reasoning

Reasoning is the task of verifying if a formula is a
logical consequence of a set of formulas.

A formula ¢ is a fuzzy logical consequence of a finite
set of formulas I iff every model of I' is a model of ¢.

In Real Logic, this is generalized by defining an
interval [g, 1] with 0.5 < g < 1 and assuming that a
formula is true iff its truth-value is in the interval [g, 1].

Unfortunately, this definition is only useful in theory
since it requires inspecting potentially infinite sets of
groundings.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN Approximate Reasoning

Option 1: Querying after learning
» Consider only the grounded theories that maximally satisfy the given theory.

« A (likely incomplete) set of such grounded theories can be found via
multiple optimization runs.

« This is a kind of brave reasoning.

Option 2: Proof by refutation

« Search for a counterexample to the consequence.

» If no such example is found, the consequence is assumed to hold.

» The general formulation cannot be used as an objective function due to null
derivatives — see paper for a soft constraint.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Approx. Reasoning: Option 1vs. 2forAVB £ A?

1.00 - 1,00+
oK)
0.75 1 0.751 G(A)
0 2
8 0.50 & 0.501
0.25 1 0.251
OIOO_ T T T T OIOO_ T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Epoch Epoch

Fig. 22. Querying after learning: 10 runs of the optimizer with objective G* = aIngaxgﬂ (Gy(K)). All runs converge to the optimum Gj; the grid search
misses the counter-example.

1.00+
G(K)
7:37 0.75- G(A)
w
§5.0- EO.SO-
2.5 0.25+
0.0_ T T T T 0.00_ T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Epoch Epoch

Fig. 23. Reasoning by refutation: one run of the optimizer with objective G* = argming“ (Go(¢p) +elu(a, Blg—Gy(K))), g=0.95 a =0.05, B =10. In the
first training epochs, the directed search prioritizes the satisfaction of the knowledge base. Then, the minimization of Gy(¢) starts to weigh in more and
the search focuses on finding a counter-example. Eventually, the run converges to the optimum Gs, which refutes the logical consequence.

Source: Badreddine, S., Garcez, A. D. A,, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Logic Tensor Networks

Use Cases



Use Case: Complex queries to interpret data and
models — Multiclass multilabel classification

1. Define symbols

Leptograpsus crabs dataset Variable x for the samples
- 5 morphological features

- Labeled as Male/Female, Constants Male, Female, Blue, Orange

for the labels

Predicate C'(z, I) classifies points into
labels using a trained Neural Network

paib s aSiaghan

FL: frontal lip of carapace (mm)

RW: rear width of carapace (mm)

Vz (C(z, Blue) — ~C(z, Orange)) CL: length along the midline of carapace (mm)
e.g. satisfaction level of 0.92 CW: maximum width of carapace (mm)

BD: body depth (mm)

2. Query the satisfaction level of some formul

Vz (C(z, Blue) — ~C(z, Male))

e.g. satisfaction level of 0.38

Source:

Full example:

Data:




Use Case: Learning using satisfaction of symbolic rules
as an objective — Clustering

% .;;' - 1. Define symbols

050 bl i oDy Variable z for the points

0.25 x{"

000 = Variable ¢ for the cluster labels
025 i :: - . 5 ‘ ‘

050 .w:‘ . }? 4 Predicate C(z, ¢) classifies points into
i ",-- Tie ’ clusters using a Neural Network; untrained

-0.75 -050 -025 0.00 025 0.50 07s

2. Write axioms 3. Train
Vz 3¢ C(z, c) Maximize Agg, (saty, ,satg,,...),
Ve 3z C(z,¢) using a "formula aggregator” (e.g. mean, p-mean, ...)
?

Y(c,z,y: |z —y| < 0.2 (C(z,c) « C(y,c)))
)

) Backpropagate gradients to symbols with
V(e,z,y: |z —y| > 1.0 =(C(z,c) A C(y,¢))))

untrained groundings: here, the predicate C'

Epoch 8: Sat Level 0.442
Epoch 100: Sat Level 8.442
Epoch 200: Sat Level 8.765

4. Query the results

10

1.0
0.8

Epoch 300:
Epoch 400:
Epoch 5060:
Epoch 600:
Epoch 700:
Epoch 80O:
Epoch 900:

Sat Level 0.851
Sat Level ©.853
Sat Level 0.853
Sat Level 0.853
Sat Level 0.854
Sat Level 0.854
Sat Level 0.854

0.5 jw

Training finished at Epoch 999 with Sat Level 0.854

L) 0.8 05 L)
0.6 0.6

0.0 0a 00 -
L ]

-05 a‘ 02 —05 0.2
L ]

: . ) 0.0 . . . 0.0

-05 00 05 -05 00 05
C(x,2) C(x,3)
10 10

()
Source:
05 [ 08 05 m 08
0.6 0.6 Full example:

o2 T TH1 e i ..
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Use Case: Smokers, Friends, Cancer

Let's consider the classic example introduced in the Markov Logic
Networks paper (Domingos et al., 2006):

* 14 people divided into two groups: {a, b, ..., h} and {i, j, ..., n}.

« Within each group, there is complete knowledge about smoking habits.

 In the first group, there is complete knowledge about who has and who
does not have cancer.

« Knowledge about the friendship relation is complete within each group
only if symmetry is assumed (i.e., Vx,y friends(x,y) — friends(y, x)).
Otherwise, knowledge about friendship is incomplete.

« Finally, general knowledge about smoking, friendship, and cancer:

— smoking causes cancer,
— friendship is normally symmetric and anti-reflexive,
— everyone has a friend, and

— smoking propagates (actively or passively) among friends.

Source:



Use Case: Smokers, Friends, Cancer

Language:

 LTN constants are used to denote the individuals. Each is grounded as a

trainable embedding.
« Smokes, Friends, Cancer predicates are grounded as simple MLPs.
» All rules + facts are formulated in the knowledgebase.
* Inconsistency: for example, person f smokes, doesn’t have cancer.
* Incompleteness: for example, inter-group friendship, cancer in group 2.

Friend(x,y) in Group 1 1o Friend(x,y) in Group 2

, 1.0 o
"
. 0.8 ¢ 0.8
j f
hl 06 0.6
% 0.4 0.4
e C
f:’ 0.2 p 0.2
b a i
a T ; 0.0 0.0

Smaokes Cancer ' a b cde f gh i jJ k I m n
Source:



Use Case: Smokers, Friends, Cancer

After training, we can:

Source:

Test satisfiability of the axioms:

Friend(x,y) in Group 1 Friend(x,y) in Group 2

1.0

m h n
| 0.8 ¢ 0.8

k m
j f

hI 0.6 0.6 [
1 04 ¢ 04 k
g C

c 02 b 02 !
b a i
a , . 0.0 0.0

Smokes Cancer a b cde f gh i jJ k I m n

Issue queries with new formulas:
forall p: Cancer(p) -> Smokes(p): 0.96
forall p,q: (Cancer(p) or Cancer(q)) -> Friends(p,q): 0.22




Use Case: Smokers, Friends, Cancer

After training, we can (cont.):

* Visualize the embeddings:

Source:

Embeddings
L‘J
& o Grc:up:lZ
N Group J
|
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Logic Tensor Networks

Discussion



LTN within the Kautz Taxonomy

According to Kautz, LTN fall within the Neuro_{Symbolic} category:

« These architectures transform symbolic rules into templates for
structures within the neural network:

Neural

FOL Tensor Model

Tensor FOL

G(P{v,u) — A(u)
max
) [
I |

Sources:
https://harshakokel.com/posts/neurosymbolic-systems/
Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN within the Kautz Taxonomy

According to Kautz, LTN fall within the Neuro_{Symbolic} category:

« These architectures transform symbolic rules into templates for
structures within the neural network.

* How is this different from category 1 (Symbolic Neuro symbolic)?
— Only the objects (individuals) are tensorized

— It’s the standard way in which deep learning approaches work: after
processing input tensors, output tensors are produced and
transformed back into symbols.

— LTN tensorizes all logical components: objects, predicates, functions,
and formulas.

Sources:
https://harshakokel.com/posts/neurosymbolic-systems/
Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



LTN as “Informed learning with prior knowledge”
------------------------------- data fommmmmmmmmsnnen,

model:semantic b
1 ]
!
y

---------------

symbol 4)( infer:deduce )—) symbol 4( generate:train )

data —)( infer:deduce )—) symbol

* LTN jointly min. NN loss functions and max. FOL theory satisfaction.

» This can be regarded as a semantic loss function.

Source: van Bekkum, M., de Boer, M., van Harmelen, F. et al. Modular design patterns for hybrid learning and reasoning
systems. Appl Intell 51, 6528-6546 (2021).



Logic Tensor Networks

Differentiable Fuzzy Logic



Differentiable Fuzzy Logic

* In presenting Real Logic and LTN, we did not give much thought to
the role of fuzzy operators in the main tasks.

« Gradient descent requires that operators be differentiable so that it
can smoothly traverse the universe of values.

* Three types of gradient problems commonly arise:

— Single-Passing: The derivatives of some operators are non-null for
only one argument. The gradients propagate to only one input at a time.

— Vanishing Gradients: Gradients vanish on some part of the domain.
Learning does not update inputs that are in the vanishing domain.

— Exploding Gradients: Large error gradients accumulate and result in
unstable updates.

Sources:
van Krieken et al. (2022). Analyzing differentiable fuzzy logic operators. Artif. Intell., 302, 103602
Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Problems: Single-Passing Gradients

Some operators have gradients propagating to only one input at a time,
meaning that all other inputs will not benefit from learning at this step.

e.g. inmin(wy,...,u,).

xs = tf.constant([1.,1.,1.,0.5,0.3,0.2,0.2,0.1])

with tf.GradientTape() as tape:
tape.watch(xs)
y = forall min(xs)
res = y.numpy()
gradients = tape.gradient(y,xs).numpy()
print(res)
print(gradients)

0.1
[6. ©. ©. 0. 0. B8. 0. 1.]

Source:



Problems: Vanishing Gradients

Some operators have vanishing gradients on some part of their domains.

e.g.inu Ay, v = max(u + v — 1,0),ifu 4+ v — 1 < 0, the gradients
vanish,

x1l = tf.constant(©.3)
x2 = tf.constant(©.5)

with tf.GradientTape() as tape:
tape.watch(x1)
tape.watch(x2)
y = and_luk(x1l,x2)
res = y.numpy()
gradients = [v.numpy() for v in tape.gradient(y,[x1,x2])]
print(res)
print(gradients)

8.0
[0.0, 0.0]

Source:



Problems: Exploding Gradients
Some operators have exploding gradients on some part of their domains.

n P
e.g.inpME(uqy,...,u,) =1— (i > (1 — fu;z-)i“) , on the edge case
i=1

where all inputs are 1.0.

xs = tf.constant([1.,1.,1.])

with tf.GradientTape() as tape:
tape.watch(xs)
y = forall pME(xs,p=4)
res = y.numpy()
gradients = tape.gradient(y,xs).numpy()
print(res)
print(gradients)

1.0
[nan nan nan]

Source:



Gradient Problems: Binary Connectives

Table C.7
Gradient problems for some binary connectives. (X) means that the problem only appears on an edge
case.

Single-Passing Vanishing Exploding
Goedel (minimum)
Tm, Sm X
Ikp X
I X X
Goguen (product)
Tp, Sp (X)
Ig (X)
Ikp X (X)
tukasiewicz
T1, 5; X
Tuk X

Source: Badreddine, S., Garcez, A. D. A, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Gradient Problems: Aggregators

Table C.8
Gradient problems for some aggregators. (X) means that the problem only appears on an edge case.
Single-Passing Vanishing Exploding
Aty [Asy, X
Atp[Asp X
At [As, X
ApM [:.K]
ApME (X)

Source: Badreddine, S., Garcez, A. D. A, Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Stable Configuration of Operators

The following is proposed as a stable configuration by Badreddine
et al. (2022):

» not: the standard negation v = 1 — u,

« and: the product t-norm u A v = uv,

» or: the product t-conorm (probabilisticsum) u V v = u + v — uv,

» implication: the Reichenbach implicatonu —+ v =1 — © + uv,

» existential quantification ("exists"): the generalized mean (p-mean)
1

PM(us, .., uy) = (ﬁzuf)f’ p>1

i=1
» universal quantification ("for all"). the generalized mean of "the
deviations w.r.t. the truth" (p-mean error)

PME(us . vw) =1 (250 -w)) p=1
i=1

Sources:
Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.



Stable Configuration of Operators

Some caveats:

* The product t-norm has vanishing gradients on the edge case u = v = 0.

« The product t-conorm has vanishing gradients on the edge case u = v = 1.

« The Reichenbach implication has vanishing gradients on the edge case u = 0,v = 1.
* p-mean has exploding gradients on the edge case u, = - = un = 0.

* p-mean error has exploding gradients on the edge case u, = --- = un = 1.
These issues happen on edge cases and can be fixed using the following "trick":

« if the edge case happens when an input u is 0, we modify every input with
u=>0—-€u+e

« if the edge case happens when an input u is 1, we modify every input with
u' =(1-¢e)u

where € is a small positive value (e.g., 1e—5).

Sources:
Badreddine, S., Garcez, A. D. A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artif. Intelli., 303, 103649.
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