
Logical Neural Networks

Overview

• Central ideas

• Basic Setup
• Logic

• Inference

• Learning

• Inference

• Learning

• Concluding Thoughts

Logical Neural Networks

Central Ideas

Central Idea:
1-1 Correspondence between logic and neural structure

• Many approaches are based on Markov random
fields (MRFs)… where each logical clause has a
weight; the clauses are atomic i.e. their internal
logical structure is not represented.

• The network structure is thus compositional and
modular, e.g. able to represent that one clause
may be a sub-clause of another. The
representation is disentangled, versus
approaches such as [19, 17] that use a vector
representation, sacrificing interpretability of the
network.

Italicized text is from Riegel et. al, 2020

Central Idea:
Tolerance to incomplete knowledge via truth bounds

• The line of approach embodied by MRFs
make a closed-world assumption, i.e. that if a
statement doesn’t appear in the KB, it is false.
LNN does not require complete specification
of all variables’ exact degree of truth, more
generally maintaining upper and lower bounds
for each variable

Italicized text is from Riegel et. al, 2020

Central Idea:
Omnidirectional inference

• LNN neurons express bidirectional
relationships with each neighbor, allowing
inference in any direction.

• MRF approaches that hide the internal logical
structure of clauses cannot draw the same
conclusions that a theorem prover can.
Many/most neuro-symbolic approaches, e.g.
those based on embeddings, are arguably
only “logic-like” and typically do not
demonstrate reliably precise deduction.

Italicized text is from Riegel et. al, 2020

Logical Neural Networks

The Basic Setup

The Basic Setup – the Logic

• The underlying logic is fuzzy (assigning values to the logical syntax)
and weighted (formulas have logical connectors associated with
them)

• Inputs are initial truth value bounds [L,U] for formulas and/or atoms
• e.g. atom inClass(student1) has a truth value in [0.9, 1.0]

• e.g. formula inClass(student1) AND inClass(student2)has a truth
value in [0.8,1.0]

• Outputs are also truth value bounds for formulas and/or atoms

• The formulas are known ahead of time

• The weights and biases associated with formulas are not

• The underlying logical connectors (fuzzy version of AND, OR,
quantifiers, etc.) not only depend on the fuzzy values of the formulas
being combined, but also the weight and bias of the operators

• Note that the same operator will have a different weight and bias for
each formula it appears in

The Basic Setup - Inference

• Input to inference:
• Set of formulas

• Initial truth bounds for each atom and formula

• Bias and weight for each formula (connector)

• Output:
• Final truth bounds for each formula and atom

• Authors propose a upward-downward pass
through the logic (this is different from forward-
backward pass used in gradient descent)

• The algorithm propagates truth values from atoms
to the formula (upward) and from the formulas to
the atoms (downward) until convergence

The Basic Setup - Learning

• Neural architecture is derived directly from the a-
priori known formulas

• Historical inputs and outputs used as samples
during the training process

• Loss function depends not only on standard ML
metrics (e.g., MSE) but also the number of
inconsistencies (neurons associated with a truth
bound where L>U.

• The functions used to combine formulas are
differentiable with respect to the weights

• The forward pass of the learning process can be
done with the inference algorithm (which is
essentially a fixpoint operator)

Logical Neural Networks

The Logic

The Logic

• Both atoms and formulas are associated with
reals in the interval [0,1]

• In practice, LNN’s only provide information about
a bound on the real-value associated with the
atoms and formulas

• This allows for uncertainty

• The author propose a threshold a for assigning
truth/falsehood/uncertainty in the result

“Table 1” is from Riegel et. al, 2020

Weighted Real-Valued Logic

• The logic is also weighted – but unlike other
frameworks, components of logical formulas
are weighted, hence they can be decomposed

• This allows real inference, unlike other logics
that do not allow such decomposition

• This decomposition allows the logic to be
directly translated into a neural structure via
the syntax tree of each formula

Example Formula

• Disjunction

• Conjunction

• Implication

Formulas are from Riegel et. al, 2020 (Figure 1a)

Syntax Tree == Neural Structure

The syntax tree is from Riegel et. al, 2020 (Figure 1a)

(Tailored) Activation Function

Chart is from Riegel et. al, 2020 (Sec. F.6)

The authors are open about a variety of activation functions and

settings of a, but do make arguments for a “tailored activation

function” in the paper.

Logical Neural Networks

Inference

Recall: Fixpoint operator

We can think of a fixpoint operator, like what we
discussed as applying “proof rules”

y

x, x → y

Note: in this example the proof

rule is a purely syntactic

manipulation, while our fixpoint

operator from the last lesson

makes reference to the semantic

structure

Inset slide from Lesson 2: Logic Review

The Strategy Behind LNN Inference

• Define correct proof rules with respect to the
logic

• Define how the bounds change based on
atoms and negations are concluded from
proof rules

• Prove a minimal required set of proof rules
based on direction of inference (atoms to
formulas vs. formulas to atoms)

• Put it all together in an algorithm that can be
proven correct based on the above items

LNN Proof Rules and Tightening of Bounds

• The basic proof rules – these are not the precise
definitions used in the algorithm, but rather showing
the classical case to which LNN inference
corresponds.

• As LNN is not classical, it is tightening bounds based
on the inference rules. This occurs as it concludes a
literal (either an atom or its negation).

Formalism is from Riegel et. al, 2020 (Sec. 4)

LNN Inference

Formalism is from Riegel et. al, 2020 (Sec. 4)

Logical Neural Networks

Learning

Overall Strategy

• Use gradient descent to find weights, using
normal back-propagation and the
aforementioned inference process for the
forward pass

• Loss function combines normal metrics (e.g.,
MSE) and a count of inconsistent neurons

Key Issues to Consider

• Parameters w and b must be set in a way such
that classical logic outcomes for the operators
behave as expected (i.e., if either proposition
a or b has a value of 1, the disjunction should
always result in 1)

• Learning parameters that fit vs. interpretability

Objective Function with Constraints

• To ensure reasonable settings of parameters, the
authors show how the parameter-learning problem
can be framed as an optimization problem with
constraints

• Here, E(B,W) is the traditional loss function and the
summation is designed to reduce
the number of inconsistencies

• Some Issues: (fully listed in section F.1)
• Requirement of additional slack parameters
• Parameter updates require constraint satisfiaction
• b must be learnt for each neuron, hinders interpretability and

leads to overfitting

Formalism is from Riegel et. al, 2020 (Sec. 6)

Tailored Activation Function

Formalism is from Riegel et. al, 2020 (Sec. 6)

Shown here is a tailored activation function for disjunction with b=1.

Key advantages:

- The logic is maintained regardless of the weights

- The authors claim that the output is independent of b, so they define it

as

Tailored Activation Function with Four Points
of Interest

Chart and formalism is from Riegel et. al, 2020 (Sup. F)

xmaxxmaxxF

xF

a

1-a

a

1-a

xT xT

So what do we end up learning?

• With the tailored activation function, we are
essentially learning parameters of the
operators that allow the logic to return values
appropriately in the various regions

Loss Function

• As the loss function includes
a measurement of
inconsistency, in
experiments oscillation was
observed

• In particular, parameter
settings were causing
differing groups of neuron to
be inconsistent, and this
changed with each epoch

• It is noteworthy that this
illustrates that there could be
multiple solutions to the
same optimization problems
with different parameters

Chart and formalism is from Riegel et. al, 2020 (Sup. H)

Logical Neural Networks

Concluding Thoughts

LTN and LNN

• LTN’s (Badreddine et al., 2022) and LNN’s
(Riegel et al., 2020)

• Key idea: use gradient descent to assign
weight to fuzzy logic facts and formulas

• Minimized inconsistency via loss function

• Does not support learning of new logical
structures (i.e. rules) – only assigns
weights

Criteria LNN LTN

1. Arbitrary Queries NO YES

2. Symbolic

explanation

YES NO

3. Integrate prior

knowledge and

constraints

YES YES

4. Assures

consistency

NO NO

5. Learn rule structure NO NO

6. Learn classical

rules

NO NO

7. Scalability YES YES

Kautz’s Taxonomy for LNN:
Category 4. Neuro:Symbolic → Neuro

• Uses architecture of #1 but with symbolic rules to
guide the neural training process

• Note: this does not provide a symbolic derivation
of the result

• Kautz’s taxonomy does not specify if such
frameworks should have guarantees, so LNN’s
fall into this category as well (at least according to
Garcez and Lamb)

• Examples vary widely:
• Symbolic information is normally compiled into the

training data (not covered in this course)
• LNN’s
• Differentiable ILP

Note that Garcez is a co-author of the LTN papers. LTN is considered category 5 – a higher tier.

Inconsistency

• Not fundamentally guaranteed

• Authors do mention that consistency check
can be done during the training process

• It is noteworthy that consistency is based on
neurons, not atoms – so for all formulas
known a-prior, you know which ones will be
inconsistent

• However, if you are checking an entailment
query against the logic, there are no
guarantees if it is correct

Modularity

• Does the learning of parameters around the
operators lead to a modular logic program?

• If you want to check an entailment query of a
formula, what weights do you use for the
operator?

• If you must re-run training to check for
entailment, then is it modular?

• Would that a scalable practice?

Prior Knowledge

• Are LNN’s really incorporating prior knowledge
or are they just using it in a way to guide
model fit?

• Perhaps we can force prior knowledge
neurons to always be consistent

• Does the assignment of weights to the
operators change the meaning of the prior
knowledge?

