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Central Idea: 
1-1 Correspondence between logic and neural structure

• Many approaches are based on Markov random 
fields (MRFs)… where each logical clause has a 
weight; the clauses are atomic i.e. their internal 
logical structure is not represented. 

• The network structure is thus compositional and 
modular, e.g. able to represent that one clause 
may be a sub-clause of another. The 
representation is disentangled, versus 
approaches such as [19, 17] that use a vector 
representation, sacrificing interpretability of the 
network. 

Italicized text is from Riegel et. al, 2020



Central Idea: 
Tolerance to incomplete knowledge via truth bounds

• The line of approach embodied by MRFs 
make a closed-world assumption, i.e. that if a 
statement doesn’t appear in the KB, it is false. 
LNN does not require complete specification 
of all variables’ exact degree of truth, more 
generally maintaining upper and lower bounds 
for each variable 

Italicized text is from Riegel et. al, 2020



Central Idea: 
Omnidirectional inference

• LNN neurons express bidirectional 
relationships with each neighbor, allowing 
inference in any direction.

• MRF approaches that hide the internal logical 
structure of clauses cannot draw the same 
conclusions that a theorem prover can. 
Many/most neuro-symbolic approaches, e.g. 
those based on embeddings, are arguably 
only “logic-like” and typically do not 
demonstrate reliably precise deduction.

Italicized text is from Riegel et. al, 2020
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The Basic Setup – the Logic

• The underlying logic is fuzzy (assigning values to the logical syntax) 
and weighted (formulas have logical connectors associated with 
them)

• Inputs are initial truth value bounds [L,U] for formulas and/or atoms
• e.g. atom inClass(student1) has a truth value in [0.9, 1.0]

• e.g. formula inClass(student1) AND inClass(student2)has a truth 
value in [0.8,1.0]

• Outputs are also truth value bounds for formulas and/or atoms

• The formulas are known ahead of time

• The weights and biases associated with formulas are not

• The underlying logical connectors (fuzzy version of AND, OR, 
quantifiers, etc.) not only depend on the fuzzy values of the formulas 
being combined, but also the weight and bias of the operators

• Note that the same operator will have a different weight and bias for 
each formula it appears in



The Basic Setup - Inference

• Input to inference:
• Set of formulas

• Initial truth bounds for each atom and formula

• Bias and weight for each formula (connector)

• Output:
• Final truth bounds for each formula and atom

• Authors propose a upward-downward pass 
through the logic (this is different from forward-
backward pass used in gradient descent)

• The algorithm propagates truth values from atoms 
to the formula (upward) and from the formulas to 
the atoms (downward) until convergence



The Basic Setup - Learning

• Neural architecture is derived directly from the a-
priori known formulas

• Historical inputs and outputs used as samples 
during the training process

• Loss function depends not only on standard ML 
metrics (e.g., MSE) but also the number of 
inconsistencies (neurons associated with a truth 
bound where L>U.

• The functions used to combine formulas are 
differentiable with respect to the weights

• The forward pass of the learning process can be 
done with the inference algorithm (which is 
essentially a fixpoint operator)
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The Logic

• Both atoms and formulas are associated with 
reals in the interval [0,1]

• In practice, LNN’s only provide information about 
a bound on the real-value associated with the 
atoms and formulas

• This allows for uncertainty

• The author propose a threshold a for assigning 
truth/falsehood/uncertainty in the result

“Table 1” is from Riegel et. al, 2020



Weighted Real-Valued Logic

• The logic is also weighted – but unlike other 
frameworks, components of logical formulas 
are weighted, hence they can be decomposed

• This allows real inference, unlike other logics 
that do not allow such decomposition

• This decomposition allows the logic to be 
directly translated into a neural structure via 
the syntax tree of each formula



Example Formula

• Disjunction

• Conjunction

• Implication

Formulas are from Riegel et. al, 2020 (Figure 1a)



Syntax Tree == Neural Structure

The syntax tree is from Riegel et. al, 2020 (Figure 1a)



(Tailored) Activation Function

Chart is from Riegel et. al, 2020 (Sec. F.6)

The authors are open about a variety of activation functions and 

settings of a, but do make arguments for a “tailored activation 

function” in the paper.
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Recall: Fixpoint operator

We can think of a fixpoint operator, like what we 
discussed as applying “proof rules”

y
________________________

x, x → y

Note: in this example the proof 

rule is a purely syntactic 

manipulation, while our fixpoint 

operator from the last lesson 

makes reference to the semantic 

structure

Inset slide from Lesson 2: Logic Review



The Strategy Behind LNN Inference

• Define correct proof rules with respect to the 
logic

• Define how the bounds change based on 
atoms and negations are concluded from 
proof rules

• Prove a minimal required set of proof rules 
based on direction of inference (atoms to 
formulas vs. formulas to atoms)

• Put it all together in an algorithm that can be 
proven correct based on the above items



LNN Proof Rules and Tightening of Bounds

• The basic proof rules – these are not the precise 
definitions used in the algorithm, but rather showing 
the classical case to which LNN inference 
corresponds.

• As LNN is not classical, it is tightening bounds based 
on the inference rules.  This occurs as it concludes a 
literal (either an atom or its negation).

Formalism is from Riegel et. al, 2020 (Sec. 4)



LNN Inference

Formalism is from Riegel et. al, 2020 (Sec. 4)
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Overall Strategy

• Use gradient descent to find weights, using 
normal back-propagation and the 
aforementioned inference process for the 
forward pass

• Loss function combines normal metrics (e.g., 
MSE) and a count of inconsistent neurons



Key Issues to Consider

• Parameters w and b must be set in a way such 
that classical logic outcomes for the operators 
behave as expected (i.e., if either proposition 
a or b has a value of 1, the disjunction should 
always result in 1)

• Learning parameters that fit vs. interpretability



Objective Function with Constraints

• To ensure reasonable settings of parameters, the 
authors show how the parameter-learning problem 
can be framed as an optimization problem with 
constraints

• Here, E(B,W) is the traditional loss function and the 
summation                               is designed to reduce 
the number of inconsistencies

• Some Issues: (fully listed in section F.1)
• Requirement of additional slack parameters
• Parameter updates require constraint satisfiaction
• b must be learnt for each neuron, hinders interpretability and 

leads to overfitting

Formalism is from Riegel et. al, 2020 (Sec. 6)



Tailored Activation Function

Formalism is from Riegel et. al, 2020 (Sec. 6)

Shown here is a tailored activation function for disjunction with b=1.

Key advantages:

- The logic is maintained regardless of the weights

- The authors claim that the output is independent of b, so they define it 

as 



Tailored Activation Function with Four Points 
of Interest

Chart and formalism is from Riegel et. al, 2020 (Sup. F)
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So what do we end up learning?

• With the tailored activation function, we are 
essentially learning parameters of the 
operators that allow the logic to return values 
appropriately in the various regions



Loss Function

• As the loss function includes 
a measurement of 
inconsistency, in 
experiments oscillation was 
observed

• In particular, parameter 
settings were causing 
differing groups of neuron to 
be inconsistent, and this 
changed with each epoch

• It is noteworthy that this 
illustrates that there could be 
multiple solutions to the 
same optimization problems 
with different parameters

Chart and formalism is from Riegel et. al, 2020 (Sup. H)
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LTN and LNN

• LTN’s (Badreddine et al., 2022) and LNN’s 
(Riegel et al., 2020)

• Key idea: use gradient descent to assign 
weight to fuzzy logic facts and formulas

• Minimized inconsistency via loss function

• Does not support learning of new logical 
structures (i.e. rules) – only assigns 
weights

Criteria LNN LTN

1. Arbitrary Queries NO YES

2. Symbolic 

explanation

YES NO

3. Integrate prior 

knowledge and 

constraints

YES YES

4. Assures 

consistency

NO NO

5. Learn rule structure NO NO

6. Learn classical 

rules

NO NO

7. Scalability YES YES



Kautz’s Taxonomy for LNN:
Category 4. Neuro:Symbolic → Neuro

• Uses architecture of #1 but with symbolic rules to 
guide the neural training process

• Note: this does not provide a symbolic derivation 
of the result

• Kautz’s taxonomy does not specify if such 
frameworks should have guarantees, so LNN’s 
fall into this category as well (at least according to 
Garcez and Lamb)

• Examples vary widely:
• Symbolic information is normally compiled into the 

training data (not covered in this course)
• LNN’s
• Differentiable ILP

Note that Garcez is a co-author of the LTN papers.  LTN is considered category 5 – a higher tier.



Inconsistency

• Not fundamentally guaranteed

• Authors do mention that consistency check 
can be done during the training process

• It is noteworthy that consistency is based on 
neurons, not atoms – so for all formulas 
known a-prior, you know which ones will be 
inconsistent

• However, if you are checking an entailment 
query against the logic, there are no 
guarantees if it is correct



Modularity

• Does the learning of parameters around the 
operators lead to a modular logic program?

• If you want to check an entailment query of a 
formula, what weights do you use for the 
operator?

• If you must re-run training to check for 
entailment, then is it modular?

• Would that a scalable practice?



Prior Knowledge

• Are LNN’s really incorporating prior knowledge 
or are they just using it in a way to guide 
model fit?

• Perhaps we can force prior knowledge 
neurons to always be consistent

• Does the assignment of weights to the 
operators change the meaning of the prior 
knowledge?




