PyReason

%" Arizona State
University

School of Computing and Augmented Intelligence

V2

Technical Preliminaries

The PyReason framework

Agenda

Planned integration with ARL
Battlespace

Copyright © 2022 Arizona Board of Regents

Technical Preliminaries

Propositional Logic
Semantics
Implication/Rules
Fixpoint Operator

First Order Logic

Propositional Logic

Jack has school and school starts at 7 am. So Jack wakes up early.

Propositional Logic

Jack has school and school starts at 7 am. So Jack wakes up early.
A A B — C

Propositional Logic

Jack has school and school starts at 7 am. So Jack wakes up early.
A A B — C

o [NGIIEY A, B, C, . .. (either True or False)
M Operators: EIFNMERR
.

o A
o = A

o AVB

o (A)AB)—>C

Semantics

e Consider a set of atoms
U={a,, a,, as}

e Then we can define a world W as a subset of U
W={} {a}, {az} {ast {ar, ap) {ay s ash {a,, as} {a;,, ay, a3}

if an atom is a member of a world, it is considered true in
that world otherwise it is false.

Copyright © 2022 Arizona Board of Regents

Implication / Rules

e Consider formulas: f, f', f"
e Example of a rule:

FVf—f

body — h_ead(atoms/negations)

e Alternatively, we can write this as:

fefVvf

e A fact is a rule with no body (i.e. body is always true)

[«

The Fixpoint Operator (I):

e An application of I involves:
o A set of atoms U, A world w, A set of rules R.
o all rules in R satisfied by w.
o w + any atoms concluded from applied rules.

The Fixpoint Operator (I):

e An application of I involves:
o A set of atoms U, A world w, A set of rules R.
o all rules in R satisfied by w.
o w + any atoms concluded from applied rules.
e Consider,
o U={a;,a,, as}
o R={a; <, a,— a;, a3 ay}

o w; = {a,}
o [gr(wW;) ={a;, a,, as}

The Fixpoint Operator (I):

e Consider,
o U={a,,a,, as}
o R={a; <, a, — ay, az < ay}

o W, ={as}
o [gr(Wyp) ={a,, az}

o wy={}
o [g(ws) ={a}

The Fixpoint Operator (I):

e An application of I involves:
o A set of atoms U, A world w, A set of rules R.
o all rules in R satisfied by w.
o w + any atoms concluded from applied rules.

e Can be written as:
[c(W) =w U U _r{head(r) such that body(r) € w}

e [can be iteratively applied multiple times as:
FROW) =g (FRHD(w))

The Fixpoint Operator (I):

e Useful for making conclusions, as well as, explanations behind them:
o U={ay,ay,az}
o R={a; <, a, < a, a3 ay}

o wy={}

o rM(ws) = {a,} Ay <
o g(wg) ={a,, ay} Ay < Ay

o IRB®(wy) ={a,, a,, as} a3 < A

Copyright © 2022 Arizona Board of Regents

First Order Logic/Predicate Calculus

Predicates are a way to specify atomic propositions.
Consider,

“friend” is a predicate

VvV, , V, are two variables friend(v,, v,)

V2

First Order Logic/Predicate Calculus

Predicates are a way to specify atomic propositions.

Consider,

“friend” is a predicate

VvV, , V, are two variables friend(v,, v,)
jack, phil are two people (constants) friend(jack, phil)

V2

First Order Logic/Predicate Calculus

Predicates are a way to specify atomic propositions.

Consider,

“friend” is a predicate

VvV, , V, are two variables friend(v,, v,)
jack, phil are two people (constants) friend(jack, phil)

|

V:z Jack and Phil are friends

First Order Logic/Predicate Calculus

Predicates are a way to specify atomic propositions.

Consider,

“friend” is a predicate

VvV, , V, are two variables friend(v,, v,)
jack, phil are two people (constants) friend(jack, phil)

|

V:z Jack and Phil are friends

First Order Logic/Predicate Calculus

Non-ground atoms are the key item that differentiates Predicate
Calculus from Propositional Calculus.

Predicate + Variable symbol(s) = friend(v, , Vv,)
(Non-ground) atomic proposition
Predicate + Constant(s) = friend(jack, phil)

(Ground) atomic proposition

V2

Predicate Calculus in Knowledge Graphs

e Unary predicates can model attributes
of nodes.
e.g. student(c,)

e Binary predicates can model relationships
between nodes (attributes of edges).
e.g. friend(c,, c,)

The PyReason framework

Lattice structure and annotations
Support for Temporal Reasoning
Notion of Interpretation

Rules

Type-checking and Consistency checking

Generalized Annotated Logic V2

PyReason performs reasoning about first-order and propositional logic
statements,

Generalized Annotated Logic V2

PyReason performs reasoning about first-order and propositional logic
statements, that can be annotated with elements of a lattice structure.

[0.0,0.0] [0.1,0.1] [0.2,0.2] [0.3,0.3] [0.4,0.4] [0.5,0.5] [0.6,0.6] [0.7,0.7] [0.8,0.8] [0.9,0.9] [1.0,1.0]

. w ., l]‘ l]‘ II‘ ., i ¥ e x

"'-u..\x-v/_/ ““"“\.__ // o \‘\...- /-’ H‘“‘HL,_,- -
[0.0,0.1] [0.2,0.3] [0.4,0.4] [0.5,0.5] [0.6,0.6] [0.7,0.8] [0.9,1.0]

I

_ g . — B
- “
— — T . —

—

[0.0,0.3] [0.35,0.4] [0.45,0.55] [0.6,0.65] (0.7,1.0]

. - .

““-

-

~— # ~
R e
e “-‘“‘
e o .y
T,
-,

““"""-./ ’

[0.0,0.4] [0.41,0.59] [0.6,1.0]

+_H___“—~—__%_____ J/

[0.0,1.0]

Generalized Annotated Logic V2

PyReason performs reasoning about first-order and propositional logic
statements, that can be annotated with elements of a lattice structure.

[0.0,0.0] [0.1,0.1] [0.2,0.2] [0.3,0.3] [0.4,0.4] [0.5,0.5] [0.6,0.6] [0.7,0.7] [0.8,0.8] [0.9,0.9] [1.0,1.0]

. w ., l]‘ l]‘ II‘ ., i ¥ e x

"'-u..\x-v/_/ ““"“\.__ // o \‘\...- /-’ H‘“‘HL,_,- -
[0.0,0.1] [0.2,0.3] [0.4,0.4] [0.5,0.5] [0.6,0.6] [0.7,0.8] [0.9,1.0]

I

_ g . — B
- “
— — T . —

—

[0.0,0.3] [0.35,0.4] [0.45,0.55] [0.6,0.65] (0.7,1.0]

. - .

““-

-

~— # ~
R e
e “-‘“‘
e o .y
T,
-,

““"""-./ ’

[0.0,0.4] [0.41,0.59] [0.6,1.0]

+_H___“—~—__%_____ J/

[0.0,1.0]

NIEIIEIENES map atomic propositions to elements of this lattice structure

Design Feature: Uncertainty

Allowing Interpretation (I) to map atoms to bounds allows us to model
uncertainty effectively.

For e.g.

When we have no information about friend(jack,phil),
|(friend(jack,phil)) = [0,1]

While still supporting the propositional cases:
I(friend(jack,phil)) =[1,1] friends

|(friend(jack,phil)) = [0,0] not friends

Copyright © 2022 Arizona Board of Regents

Design Feature: Temporal Reasoning

We additionally allow Interpretation (I) to map time (alongside atoms) to
bounds and hence we can perform reasoning over time.

Continuing with the same example, we can have,
|(friend(jack,phil), jan) = [0,0] not friends in January

[(friend(jack,phil), feb) =[0,1] no info about February
open-world assumption

[(friend(jack,phil), mar) =[1,1] friends in March vz

PyReason Input/Outputs

Option: Interpretations at every step

Knowledge Graph

Initial

Interpretations Final Interpretations (Option: pickled)

PyReason

Facts

RUIES JA
OR |
Observations Learning
Module

Explanations (Rule, Time)
for every change in interpretation

Copyright © 2022 Arizona Board of Regents

Design Feature: Explainability

By implementing the fixpoint operator directly (as opposed to a black box

heuristic) the software enables full explainability of the result.

e \We can recover a trace of every rule applied and its effect.
e \We can uncover causal relationships between atomic propositions.

e We can detect logical flaws and inconsistencies.

Copyright © 2022 Arizona Board of Regents

Logical Rules REEECGERIATIERLE

Universally quantified non-ground rule

VX: | pred(X): f(xq, ..., Xp) <At /\ pred;(X): x;

pred; € UnaSet

Universal quantifier
(design feature)

Logical Rules REEEIPENCEEEURCEE

Universally quantified non-ground rule

vX: pred(X): f(xq, ..., Xp) “—pe|Fpl X el (X, X"): [1,1] A /\ predq,(X,X"): x,
predq € BinSet

A /\ pred,(X):x, A /\ pred(X'): x,

pred, € UnaSet predgs € UnaSet!

Existential quantifier
(design feature)

Copyright © 2022 Arizona Board of Regents

Logical Rules [SERIES

e promoted(X):[1,1] «q1yeqr gpa(X):[0.3,1]
Student X will get promoted at the end of the year if their overall gpa is in the
top 70% of the class.

e promoted(X):[1,1] «<1yeqr gpa(X):[0.3,1] A Ay takes(X,Y):[1,1] A
Ay passed(X,Y):[1,1]
adds an additional condition that to get promoted, X must pass all of the
courses they take.

o gpa(X):lavg(xs)] <1yeqr 32 takes(X,Y):[1,1] Ascore(X,Y): x,
shows a way to compute gpa using two classes taken by X.

Copyright © 2022 Arizona Board of Regents

Design Feature: Type-checking

student(eve) v student(math) X
student(cal) v eve cal
subject(math) v subject(eve) X

subject(cal) X

friend(eve, cal) v friend(math, cal) X

takes(eve, math) v takes(eve, cal) X

takes(math, eve) X Vz

Copyright © 2022 Arizona Board of Regents

Design Feature: Type-checking

e Avoids silly errors like: “Math is driving a car”. eve cal

e Provides drastic reduction to complexity
iInduced by the grounding problem, by
Increasing graph sparsity, reducing storage
and computations.

e Significantly improves utility in a variety of
application domains.

Copyright © 2022 Arizona Board of Regents

Design Feature: Type-checking

e Optional feature. Can be turned on/off. eve cal

e Specified at the time of building the graph: if
we have prior knowledge about constraints
over predicate-atom pairs.

Copyright © 2022 Arizona Board of Regents

Design Feature: Support for literals

A literal is any ground atom or a negation of a ground atom.

Traditional logic frameworks only support atoms or its negation, not both.

In PyReason -

e Atoms and their negations can be simultaneously implemented.

e We define both as separate ground atoms, and,

e We define a consistency constraint that prevents an atom and its

negation to co-exist.

Copyright © 2022 Arizona Board of Regents

Design Feature: Consistency [SEEis

Defining literals:
I(at_home(x),t) =[1,1] and I[(not_home(x),t) = [1,1] X

Modelling relationships between pairs which might become inconsistent:
I(bachelor(x),t) =[1,1] and I[(married(x),t) = [1,1] X

I(fit(x),1) = [0.6,1] and I(injured(x),t) = [0,0.8] X

Copyright © 2022 Arizona Board of Regents

Design Feature: Consistency [SEEis

Checking:

I, = [Ly, U]

|, = [L,, U]

Then they are consistent,
IffL,<1-L, and U;21-U,

Resolution:
I, =1, =0, 1]

Checking:
Icurrent [Ll’ Ul]
new [I—Z’ 2]

Then they are consistent,
IffL,=U, and U, 2L,

Resolution:
Iupdated [O 1]

and

L, < U,

Design Feature: Consistency IhERCerlie:

from outcome of a rule

l.e. from same lower lattice

Copyright © 2022 Arizona Board of Regents

Integration within ARL Battlespace

Modelling the Game World

Interfacing with PyReason

Modeling the Game World

e The game board is modeled as a graph:
o [Each square is a node.
o Edges between neighbouring squares, air and land.

Modeling the Game World

e The game board is modeled as a graph:
o [Each square is a node.
o Edges between neighbouring squares, air and land.

e Other components can be modeled as -
o Units (Soldier, Tank, Truck, Flag, Airplane, Missiles) are nodes,
with attribute M&fs’ = {air, ground, immovable}.
o Players (A,B,C,D) are nodes.

Copyright © 2022 Arizona Board of Regents

Modeling the Game World

e The game board is modeled as a graph:
o [Each square is a node.
o Edges between neighbouring squares, air and land.

e Other components can be modeled as -
o Units (Soldier, Tank, Truck, Flag, Airplane, Missiles) are nodes,
with attribute o5’ = {air, ground, immovable}.
o Players (A,B,C,D) are nodes.
o Edges between Units and Squares have EN{UES).
o Edges between Players and Units have Si(zV)).

Copyright © 2022 Arizona Board of Regents

Modeling the Game World

e Rules:

o All possible actions e.g. Advancement changes location of an unit
e.g. Rotate changes orientation.

Copyright © 2022 Arizona Board of Regents

Modeling the Game World

e Rules:
o All possible actions e.g. Advancement changes location of an unit
o Movement of missiles are facts

Copyright © 2022 Arizona Board of Regents

Modeling the Game World

e Rules:
o All possible actions e.g. Advancement changes location of an unit
o Movement of missiles are facts
o Causal effects of actions e.g. Overlap leads to mutual destruction

Advance U1, S1
Advance U2, S1
Trigger: Destroy U1, U2

Copyright © 2022 Arizona Board of Regents

Modeling the Game World

e Rules:
o All possible actions e.g. Advancement changes location of an unit
o Movement of missiles are facts
o Causal effects of actions e.g. Overlap leads to mutual destruction

e Termination conditions (flag capture / annihilation) is captured in the
body of a rule, which when fired ends the game.

Copyright © 2022 Arizona Board of Regents

Modeling the Game World

e Rules:
o All possible actions e.g. Advancement changes location of an unit
o Movement of missiles are facts
o Causal effects of actions e.g. Overlap leads to mutual destruction

e Termination conditions (flag capture / annihilation) is captured in the
body of a rule, which when fired ends the game.

e At initialization, type-checking ensures attributes are matched to
appropriate nodes and edges in the graph. Vz

Copyright © 2022 Arizona Board of Regents

Interfacing with PyReason

Input: Current State
List of interpretations with bounds in .yaml format

Course of Action
List of tuples of the form (action, player, unit, time)

Output: Next States
List of interpretations with bounds in .pkl format

Thank You
V2

