
Copyright © 2022 Arizona Board of Regents

PyReason

School of Computing and Augmented Intelligence

Copyright © 2022 Arizona Board of Regents

Agenda

Technical Preliminaries

The PyReason framework

Planned integration with ARL
Battlespace

Copyright © 2022 Arizona Board of Regents

Technical Preliminaries

Propositional Logic

Semantics

Implication/Rules

Fixpoint Operator

First Order Logic

Copyright © 2022 Arizona Board of Regents

Jack has school and school starts at 7 am. So Jack wakes up early.

Propositional Logic

Copyright © 2022 Arizona Board of Regents

Jack has school and school starts at 7 am. So Jack wakes up early.

A ∧ B → C

Propositional Logic

Copyright © 2022 Arizona Board of Regents

Jack has school and school starts at 7 am. So Jack wakes up early.

A ∧ B → C

● Atoms: A, B, C, . . . (either True or False)

● Operators: ¬ , ∧ , ∨ , → , ↔

● Formulas:

○ A

○ ¬ A

○ A ∨ B

○ ((¬ A) ∧ B) → C

Propositional Logic

Copyright © 2022 Arizona Board of Regents

● Consider a set of atoms

𝑈 = {𝑎1 , 𝑎2 , 𝑎3}

● Then we can define a world 𝑊 as a subset of 𝑈

𝑊= {}, {𝑎1}, {𝑎2}, {𝑎3}, {𝑎1 , 𝑎2 }, {𝑎1 , 𝑎3}, {𝑎2 , 𝑎3}, {𝑎1 , 𝑎2 , 𝑎3}

Intuition: if an atom is a member of a world, it is considered true in

that world otherwise it is false.

Semantics

Copyright © 2022 Arizona Board of Regents

● Consider formulas: 𝑓, 𝑓′, 𝑓′′

● Example of a rule:

𝑓′ ∨ 𝑓′′ → 𝑓

body → head(atoms/negations)

● Alternatively, we can write this as:

𝑓 ← 𝑓′ ∨ 𝑓′′

● A fact is a rule with no body (i.e. body is always true)

𝑓 ←

Implication / Rules

Copyright © 2022 Arizona Board of Regents

● An application of Γ involves:

○ Input A set of atoms 𝑈, A world w, A set of rules R.

○ Apply all rules in R satisfied by w.

○ Output w + any atoms concluded from applied rules.

The Fixpoint Operator (Γ):

Copyright © 2022 Arizona Board of Regents

● An application of Γ involves:

○ Input A set of atoms 𝑈, A world w, A set of rules R.

○ Apply all rules in R satisfied by w.

○ Output w + any atoms concluded from applied rules.

● Consider,

○ 𝑈 = {𝑎1 , 𝑎2 , 𝑎3}

○ R = {𝑎1 ←, 𝑎2 ← 𝑎1, 𝑎3 ← 𝑎2}

○ w1 = {𝑎2}

○ ΓR(w1) = {𝑎1 , 𝑎2 , 𝑎3}

The Fixpoint Operator (Γ):

Copyright © 2022 Arizona Board of Regents

● Consider,

○ 𝑈 = {𝑎1 , 𝑎2 , 𝑎3}

○ R = {𝑎1 ←, 𝑎2 ← 𝑎1, 𝑎3 ← 𝑎2}

○ w2 = {𝑎3}

○ ΓR(w2) = {𝑎1 , 𝑎3}

○ w3 = { }

○ ΓR(w3) = {𝑎1}

The Fixpoint Operator (Γ):

Copyright © 2022 Arizona Board of Regents

● An application of Γ involves:

○ Input A set of atoms 𝑈, A world w, A set of rules R.

○ Apply all rules in R satisfied by w.

○ Output w + any atoms concluded from applied rules.

● Can be written as:

ΓR(w) = 𝑤 ∪ U𝑟∈R{ℎ𝑒𝑎𝑑(𝑟) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑏𝑜𝑑𝑦(𝑟) ⊆ 𝑤}

● Γ can be iteratively applied multiple times as:

ΓR
(i)(w) = ΓR (ΓR

(i-1)(w))

The Fixpoint Operator (Γ):

Copyright © 2022 Arizona Board of Regents

● Useful for making conclusions, as well as, explanations behind them:

○ 𝑈 = {𝑎1 , 𝑎2 , 𝑎3}

○ R = {𝑎1 ←, 𝑎2 ← 𝑎1, 𝑎3 ← 𝑎2}

○ w3 = { }

○ ΓR
(1)(w3) = {𝑎1} 𝑎1 ←

○ ΓR
(2)(w3) = {𝑎1 , 𝑎2} 𝑎2 ← 𝑎1

○ ΓR
(3)(w3) = {𝑎1 , 𝑎2, 𝑎3} 𝑎3 ← 𝑎2

The Fixpoint Operator (Γ):

Copyright © 2022 Arizona Board of Regents

First Order Logic/Predicate Calculus

friend(v1 , v2)

Predicates are a way to specify atomic propositions.

Consider,

“friend” is a predicate

v1 , v2 are two variables

Copyright © 2022 Arizona Board of Regents

First Order Logic/Predicate Calculus

friend(v1 , v2)

friend(jack, phil)

Predicates are a way to specify atomic propositions.

Consider,

“friend” is a predicate

v1 , v2 are two variables

jack, phil are two people (constants)

Copyright © 2022 Arizona Board of Regents

First Order Logic/Predicate Calculus

friend(v1 , v2)

friend(jack, phil)

Jack and Phil are friends

Predicates are a way to specify atomic propositions.

Consider,

“friend” is a predicate

v1 , v2 are two variables

jack, phil are two people (constants)

Copyright © 2022 Arizona Board of Regents

First Order Logic/Predicate Calculus

friend(v1 , v2)

friend(jack, phil)

Jack and Phil are friends

Predicates are a way to specify atomic propositions.

Consider,

“friend” is a predicate

v1 , v2 are two variables

jack, phil are two people (constants)

Copyright © 2022 Arizona Board of Regents

First Order Logic/Predicate Calculus

friend(v1 , v2)

friend(jack, phil)

Non-ground atoms are the key item that differentiates Predicate

Calculus from Propositional Calculus.

Predicate + Variable symbol(s) =

(Non-ground) atomic proposition

Predicate + Constant(s) =

(Ground) atomic proposition

Grounding

Copyright © 2022 Arizona Board of Regents

Predicate Calculus in Knowledge Graphs

● Unary predicates can model attributes

of nodes.

e.g. student(c1)

● Binary predicates can model relationships

between nodes (attributes of edges).

e.g. friend(c1, c2)

c1

c2

c3

Copyright © 2022 Arizona Board of Regents

The PyReason framework

Lattice structure and annotations

Support for Temporal Reasoning

Notion of Interpretation

Rules

Type-checking and Consistency checking

Copyright © 2022 Arizona Board of Regents

PyReason performs reasoning about first-order and propositional logic

statements,

Generalized Annotated Logic

Copyright © 2022 Arizona Board of Regents

PyReason performs reasoning about first-order and propositional logic

statements, that can be annotated with elements of a lattice structure.

Generalized Annotated Logic

Copyright © 2022 Arizona Board of Regents

PyReason performs reasoning about first-order and propositional logic

statements, that can be annotated with elements of a lattice structure.

Generalized Annotated Logic

Interpretations map atomic propositions to elements of this lattice structure

Copyright © 2022 Arizona Board of Regents

Allowing Interpretation (I) to map atoms to bounds allows us to model

uncertainty effectively.

For e.g.

When we have no information about friend(jack,phil),

I(friend(jack,phil)) = [0,1]

While still supporting the propositional cases:

I(friend(jack,phil)) = [1,1] friends

I(friend(jack,phil)) = [0,0] not friends

Design Feature: Uncertainty

Copyright © 2022 Arizona Board of Regents

We additionally allow Interpretation (I) to map time (alongside atoms) to

bounds and hence we can perform reasoning over time.

Continuing with the same example, we can have,

I(friend(jack,phil), jan) = [0,0] not friends in January

I(friend(jack,phil), feb) = [0,1] no info about February

open-world assumption

I(friend(jack,phil), mar) = [1,1] friends in March

Design Feature: Temporal Reasoning

Copyright © 2022 Arizona Board of Regents

PyReason Input/Outputs

PyReason

Initial

Interpretations

Facts

Learning

Module

Rules
OR

Observations

Knowledge Graph

Final Interpretations (Option: pickled)

Explanations (Rule, Time)
for every change in interpretation

Option: Interpretations at every step

Copyright © 2022 Arizona Board of Regents

By implementing the fixpoint operator directly (as opposed to a black box

heuristic) the software enables full explainability of the result.

● We can recover a trace of every rule applied and its effect.

● We can uncover causal relationships between atomic propositions.

● We can detect logical flaws and inconsistencies.

Design Feature: Explainability

Copyright © 2022 Arizona Board of Regents

Universally quantified non-ground rule

∀𝑋: 𝑝𝑟𝑒𝑑 𝑋 : 𝑓 𝑥1, … , 𝑥𝑛 ←Δ𝑡 ሥ

𝑝𝑟𝑒𝑑𝑖 ∈ 𝑈𝑛𝑎𝑆𝑒𝑡

𝑝𝑟𝑒𝑑𝑖 𝑋 : 𝑥𝑖

Universal quantifier

(design feature)

Annotation is a function over the elements in lattice

e.g. Max, Min, Avg,

Fuzzy t-norms and conorms

(design feature)

Logical Rules Reasoning within a node

Copyright © 2022 Arizona Board of Regents

Universally quantified non-ground rule

∀𝑋: 𝑝𝑟𝑒𝑑 𝑋 : 𝑓 𝑥1, … , 𝑥𝑛 ←Δ𝑡 ∃𝑘 𝑋
′: 𝑟𝑒𝑙 𝑋, 𝑋′ : 1,1 ∧ ሥ

𝑝𝑟𝑒𝑑𝑞 ∈ 𝐵𝑖𝑛𝑆𝑒𝑡

𝑝𝑟𝑒𝑑𝑞 𝑋, 𝑋′ : 𝑥𝑞

∧ ሥ

𝑝𝑟𝑒𝑑𝑟 ∈ 𝑈𝑛𝑎𝑆𝑒𝑡

𝑝𝑟𝑒𝑑𝑟 𝑋 : 𝑥𝑟 ∧ ሥ

𝑝𝑟𝑒𝑑𝑠 ∈ 𝑈𝑛𝑎𝑆𝑒𝑡′

𝑝𝑟𝑒𝑑𝑠 𝑋′ : 𝑥𝑠

Existential quantifier ‘rel’ is a reserved word.

(design feature) Marked portion denotes that -

an edge exists between X and X’

Logical Rules Reasoning across an edge

Copyright © 2022 Arizona Board of Regents

Logical Rules Examples

● 𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑑 𝑋 : 1,1 ←1𝑦𝑒𝑎𝑟 𝑔𝑝𝑎 𝑋 : 0.3, 1

Student X will get promoted at the end of the year if their overall gpa is in the

top 70% of the class.

● 𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑑 𝑋 : 1,1 ←1𝑦𝑒𝑎𝑟 𝑔𝑝𝑎 𝑋 : 0.3, 1 ∧ 𝑌ٿ 𝑡𝑎𝑘𝑒𝑠 𝑋, 𝑌 : 1,1 ∧

𝑌ٿ 𝑝𝑎𝑠𝑠𝑒𝑑 𝑋, 𝑌 : 1,1

adds an additional condition that to get promoted, X must pass all of the

courses they take.

● 𝑔𝑝𝑎 𝑋 : 𝑎𝑣𝑔(𝑥𝑠) ←1𝑦𝑒𝑎𝑟 ∃2 𝑡𝑎𝑘𝑒𝑠 𝑋, 𝑌 : 1,1 ∧ 𝑠𝑐𝑜𝑟𝑒 𝑋, 𝑌 : 𝑥𝑠
shows a way to compute gpa using two classes taken by X.

Copyright © 2022 Arizona Board of Regents

Design Feature: Type-checking

student(eve) ✔ student(math) ✘

student(cal) ✔

subject(math) ✔ subject(eve) ✘

subject(cal) ✘

friend(eve, cal) ✔ friend(math, cal) ✘

takes(eve, math) ✔ takes(eve, cal) ✘

takes(math, eve) ✘

eve cal

math

Copyright © 2022 Arizona Board of Regents

Design Feature: Type-checking

● Avoids silly errors like: “Math is driving a car”.

● Provides drastic reduction to complexity

induced by the grounding problem, by

increasing graph sparsity, reducing storage

and computations.

● Significantly improves utility in a variety of

application domains.

eve cal

art

Copyright © 2022 Arizona Board of Regents

Design Feature: Type-checking

● Optional feature. Can be turned on/off.

● Specified at the time of building the graph: if

we have prior knowledge about constraints

over predicate-atom pairs.

eve cal

art

Copyright © 2022 Arizona Board of Regents

A literal is any ground atom or a negation of a ground atom.

Traditional logic frameworks only support atoms or its negation, not both.

In PyReason -

● Atoms and their negations can be simultaneously implemented.

● We define both as separate ground atoms, and,

● We define a consistency constraint that prevents an atom and its

negation to co-exist.

Design Feature: Support for literals

Copyright © 2022 Arizona Board of Regents

Defining literals:

I(at_home(x),t) = [1,1] and I(not_home(x),t) = [1,1] ✘

Modelling relationships between pairs which might become inconsistent:

I(bachelor(x),t) = [1,1] and I(married(x),t) = [1,1] ✘

I(fit(x),t) = [0.6,1] and I(injured(x),t) = [0,0.8] ✘

Design Feature: Consistency for pairs

Copyright © 2022 Arizona Board of Regents

Checking:

I1 = [L1, U1]

I2 = [L2, U2]

Then they are consistent,

Iff L1 ≤ 1 - L2 and U1 ≥ 1 - U2

Resolution:

I1 = I2 = [0, 1]

Design Feature: Consistency for pairs

Copyright © 2022 Arizona Board of Regents

Checking:

Icurrent = [L1, U1]

Inew = [L2, U2] from outcome of a rule

Then they are consistent,

Iff L1 ≤ U2 and U1 ≥ L2 and L2 ≤ U2 i.e. from same lower lattice

Resolution:

Iupdated = [0, 1]

Design Feature: Consistency during execution

Copyright © 2022 Arizona Board of Regents

Integration within ARL Battlespace

Modelling the Game World

Interfacing with PyReason

Copyright © 2022 Arizona Board of Regents

● The game board is modeled as a graph:

○ Each square is a node.

○ Edges between neighbouring squares, air and land.

Modeling the Game World

Copyright © 2022 Arizona Board of Regents

● The game board is modeled as a graph:

○ Each square is a node.

○ Edges between neighbouring squares, air and land.

● Other components can be modeled as -

○ Units (Soldier, Tank, Truck, Flag, Airplane, Missiles) are nodes,

with attribute ‘type’ = {air, ground, immovable}.

○ Players (A,B,C,D) are nodes.

Modeling the Game World

Copyright © 2022 Arizona Board of Regents

● The game board is modeled as a graph:

○ Each square is a node.

○ Edges between neighbouring squares, air and land.

● Other components can be modeled as -

○ Units (Soldier, Tank, Truck, Flag, Airplane, Missiles) are nodes,

with attribute ‘type’ = {air, ground, immovable}.

○ Players (A,B,C,D) are nodes.

○ Edges between Units and Squares have at(U,S).

○ Edges between Players and Units have of(P,U).

. . .

Modeling the Game World

Copyright © 2022 Arizona Board of Regents

● Rules:

○ All possible actions e.g. Advancement changes location of an unit

e.g. Rotate changes orientation.

Modeling the Game World

Copyright © 2022 Arizona Board of Regents

● Rules:

○ All possible actions e.g. Advancement changes location of an unit

○ Movement of missiles are facts

Modeling the Game World

Copyright © 2022 Arizona Board of Regents

● Rules:

○ All possible actions e.g. Advancement changes location of an unit

○ Movement of missiles are facts

○ Causal effects of actions e.g. Overlap leads to mutual destruction

Advance U1, S1

Advance U2, S1

Trigger: Destroy U1, U2

Modeling the Game World

Copyright © 2022 Arizona Board of Regents

● Rules:

○ All possible actions e.g. Advancement changes location of an unit

○ Movement of missiles are facts

○ Causal effects of actions e.g. Overlap leads to mutual destruction

. . .

● Termination conditions (flag capture / annihilation) is captured in the

body of a rule, which when fired ends the game.

Modeling the Game World

Copyright © 2022 Arizona Board of Regents

● Rules:

○ All possible actions e.g. Advancement changes location of an unit

○ Movement of missiles are facts

○ Causal effects of actions e.g. Overlap leads to mutual destruction

. . .

● Termination conditions (flag capture / annihilation) is captured in the

body of a rule, which when fired ends the game.

● At initialization, type-checking ensures attributes are matched to

appropriate nodes and edges in the graph.

Modeling the Game World

Copyright © 2022 Arizona Board of Regents

Input: Current State

List of interpretations with bounds in .yaml format

Course of Action

List of tuples of the form (action, player, unit, time)

Output: Next States

List of interpretations with bounds in .pkl format

Interfacing with PyReason

Copyright © 2022 Arizona Board of Regents

Thank You

