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Jack has school and school starts at 7 am. So Jack wakes up early.

Propositional Logic
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Jack has school and school starts at 7 am. So Jack wakes up early.

A ∧ B → C

Propositional Logic
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Jack has school and school starts at 7 am. So Jack wakes up early.

A ∧ B → C

● Atoms: A, B, C, . . . (either True or False)

● Operators: ¬ , ∧ , ∨ , → , ↔

● Formulas:

○ A

○ ¬ A

○ A ∨ B

○ ((¬ A) ∧ B) → C

Propositional Logic
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● Consider a set of atoms

𝑈 = {𝑎1 , 𝑎2 , 𝑎3}

● Then we can define a world 𝑊 as a subset of 𝑈

𝑊= {}, {𝑎1}, {𝑎2}, {𝑎3}, {𝑎1 , 𝑎2 }, {𝑎1 , 𝑎3}, {𝑎2 , 𝑎3}, {𝑎1 , 𝑎2 , 𝑎3}

Intuition: if an atom is a member of a world, it is considered true in 

that world otherwise it is false.

Semantics
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● Consider formulas: 𝑓, 𝑓′, 𝑓′′

● Example of a rule:

𝑓′ ∨ 𝑓′′ → 𝑓

body   → head(atoms/negations)

● Alternatively, we can write this as:

𝑓 ← 𝑓′ ∨ 𝑓′′

● A fact is a rule with no body (i.e. body is always true)

𝑓 ← 

Implication / Rules
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● An application of Γ involves:

○ Input A set of atoms 𝑈, A world w, A set of rules R.

○ Apply all rules in R satisfied by w.

○ Output w + any atoms concluded from applied rules.

The Fixpoint Operator (Γ):
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● An application of Γ involves:

○ Input A set of atoms 𝑈, A world w, A set of rules R.

○ Apply all rules in R satisfied by w.

○ Output w + any atoms concluded from applied rules.

● Consider,

○ 𝑈 = {𝑎1 , 𝑎2 , 𝑎3}

○ R = {𝑎1 ←, 𝑎2 ←  𝑎1, 𝑎3 ← 𝑎2}

○ w1 = {𝑎2}

○ ΓR(w1) = {𝑎1 , 𝑎2 , 𝑎3}

The Fixpoint Operator (Γ):
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● Consider,

○ 𝑈 = {𝑎1 , 𝑎2 , 𝑎3}

○ R = {𝑎1 ←, 𝑎2 ←  𝑎1, 𝑎3 ← 𝑎2}

○ w2 = {𝑎3}

○ ΓR(w2) = {𝑎1 , 𝑎3}

○ w3 = { }

○ ΓR(w3) = {𝑎1}

The Fixpoint Operator (Γ):
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● An application of Γ involves:

○ Input A set of atoms 𝑈, A world w, A set of rules R.

○ Apply all rules in R satisfied by w.

○ Output w + any atoms concluded from applied rules.

● Can be written as:

ΓR(w) = 𝑤 ∪ U𝑟∈R{ℎ𝑒𝑎𝑑(𝑟) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑏𝑜𝑑𝑦(𝑟) ⊆ 𝑤}

● Γ can be iteratively applied multiple times as:

ΓR
(i)(w) = ΓR ( ΓR

(i-1)(w) )

The Fixpoint Operator (Γ):
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● Useful for making conclusions, as well as, explanations behind them:

○ 𝑈 = {𝑎1 , 𝑎2 , 𝑎3}

○ R = {𝑎1 ←, 𝑎2 ←  𝑎1, 𝑎3 ← 𝑎2}

○ w3 = { }

○ ΓR
(1)(w3) = {𝑎1} 𝑎1 ←

○ ΓR
(2)(w3) = {𝑎1 , 𝑎2} 𝑎2 ←  𝑎1

○ ΓR
(3)(w3) = {𝑎1 , 𝑎2, 𝑎3} 𝑎3 ← 𝑎2

The Fixpoint Operator (Γ):
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First Order Logic/Predicate Calculus

friend(v1 , v2)

Predicates are a way to specify atomic propositions.

Consider,

“friend” is a predicate

v1 , v2 are two variables
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First Order Logic/Predicate Calculus

friend(v1 , v2)

friend(jack, phil)

Predicates are a way to specify atomic propositions.

Consider,

“friend” is a predicate

v1 , v2 are two variables

jack, phil are two people (constants)
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First Order Logic/Predicate Calculus

friend(v1 , v2)

friend(jack, phil)

Jack and Phil are friends

Predicates are a way to specify atomic propositions.

Consider,

“friend” is a predicate

v1 , v2 are two variables

jack, phil are two people (constants)
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First Order Logic/Predicate Calculus

friend(v1 , v2)

friend(jack, phil)

Jack and Phil are friends

Predicates are a way to specify atomic propositions.

Consider,

“friend” is a predicate

v1 , v2 are two variables

jack, phil are two people (constants)
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First Order Logic/Predicate Calculus

friend(v1 , v2)

friend(jack, phil)

Non-ground atoms are the key item that differentiates Predicate 

Calculus from Propositional Calculus.

Predicate + Variable symbol(s) =

(Non-ground) atomic proposition

Predicate + Constant(s) =

(Ground) atomic proposition

Grounding



Copyright © 2022 Arizona Board of Regents

Predicate Calculus in Knowledge Graphs

● Unary predicates can model attributes

of nodes.

e.g. student(c1)

● Binary predicates can model relationships

between nodes (attributes of edges).

e.g. friend(c1, c2)

c1

c2

c3
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The PyReason framework

Lattice structure and annotations

Support for Temporal Reasoning

Notion of Interpretation

Rules

Type-checking and Consistency checking
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PyReason performs reasoning about first-order and propositional logic 

statements, 

Generalized Annotated Logic
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PyReason performs reasoning about first-order and propositional logic 

statements, that can be annotated with elements of a lattice structure.

Generalized Annotated Logic
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PyReason performs reasoning about first-order and propositional logic 

statements, that can be annotated with elements of a lattice structure.

Generalized Annotated Logic

Interpretations map atomic propositions to elements of this lattice structure
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Allowing Interpretation (I) to map atoms to bounds allows us to model 

uncertainty effectively.

For e.g.

When we have no information about friend(jack,phil),

I(friend(jack,phil)) = [0,1]

While still supporting the propositional cases:

I(friend(jack,phil)) = [1,1] friends

I(friend(jack,phil)) = [0,0] not friends

Design Feature: Uncertainty
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We additionally allow Interpretation (I) to map time (alongside atoms) to 

bounds and hence we can perform reasoning over time.

Continuing with the same example, we can have,

I(friend(jack,phil), jan) = [0,0] not friends in January

I(friend(jack,phil), feb) = [0,1] no info about February

open-world assumption

I(friend(jack,phil), mar) = [1,1] friends in March

Design Feature: Temporal Reasoning
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PyReason Input/Outputs

PyReason

Initial 

Interpretations

Facts

Learning

Module

Rules
OR

Observations

Knowledge Graph

Final Interpretations (Option: pickled)

Explanations (Rule, Time)
for every change in interpretation

Option: Interpretations at every step
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By implementing the fixpoint operator directly (as opposed to a black box 

heuristic) the software enables full explainability of the result.

● We can recover a trace of every rule applied and its effect.

● We can uncover causal relationships between atomic propositions.

● We can detect logical flaws and inconsistencies.

Design Feature: Explainability
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Universally quantified non-ground rule

∀𝑋: 𝑝𝑟𝑒𝑑 𝑋 : 𝑓 𝑥1, … , 𝑥𝑛 ←Δ𝑡 ሥ

𝑝𝑟𝑒𝑑𝑖 ∈ 𝑈𝑛𝑎𝑆𝑒𝑡

𝑝𝑟𝑒𝑑𝑖 𝑋 : 𝑥𝑖

Universal quantifier

(design feature)

Annotation is a function over the elements in lattice

e.g. Max, Min, Avg,

Fuzzy t-norms and conorms

(design feature)

Logical Rules  Reasoning within a node
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Universally quantified non-ground rule

∀𝑋: 𝑝𝑟𝑒𝑑 𝑋 : 𝑓 𝑥1, … , 𝑥𝑛 ←Δ𝑡 ∃𝑘 𝑋
′: 𝑟𝑒𝑙 𝑋, 𝑋′ : 1,1 ∧ ሥ

𝑝𝑟𝑒𝑑𝑞 ∈ 𝐵𝑖𝑛𝑆𝑒𝑡

𝑝𝑟𝑒𝑑𝑞 𝑋, 𝑋′ : 𝑥𝑞

∧ ሥ

𝑝𝑟𝑒𝑑𝑟 ∈ 𝑈𝑛𝑎𝑆𝑒𝑡

𝑝𝑟𝑒𝑑𝑟 𝑋 : 𝑥𝑟 ∧ ሥ

𝑝𝑟𝑒𝑑𝑠 ∈ 𝑈𝑛𝑎𝑆𝑒𝑡′

𝑝𝑟𝑒𝑑𝑠 𝑋′ : 𝑥𝑠

Existential quantifier ‘rel’ is a reserved word.

(design feature) Marked portion denotes that -

an edge exists between X and X’

Logical Rules  Reasoning across an edge
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Logical Rules  Examples

● 𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑑 𝑋 : 1,1 ←1𝑦𝑒𝑎𝑟 𝑔𝑝𝑎 𝑋 : 0.3, 1

Student X will get promoted at the end of the year if their overall gpa is in the 

top 70% of the class.

● 𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑑 𝑋 : 1,1 ←1𝑦𝑒𝑎𝑟 𝑔𝑝𝑎 𝑋 : 0.3, 1 ∧ 𝑌ٿ 𝑡𝑎𝑘𝑒𝑠 𝑋, 𝑌 : 1,1 ∧

𝑌ٿ 𝑝𝑎𝑠𝑠𝑒𝑑 𝑋, 𝑌 : 1,1

adds an additional condition that to get promoted, X must pass all of the 

courses they take.

● 𝑔𝑝𝑎 𝑋 : 𝑎𝑣𝑔(𝑥𝑠) ←1𝑦𝑒𝑎𝑟 ∃2 𝑡𝑎𝑘𝑒𝑠 𝑋, 𝑌 : 1,1 ∧ 𝑠𝑐𝑜𝑟𝑒 𝑋, 𝑌 : 𝑥𝑠
shows a way to compute gpa using two classes taken by X.
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Design Feature: Type-checking

student(eve) ✔ student(math) ✘

student(cal) ✔

subject(math) ✔ subject(eve) ✘

subject(cal) ✘

friend(eve, cal) ✔ friend(math, cal) ✘

takes(eve, math) ✔ takes(eve, cal) ✘

takes(math, eve) ✘

eve cal

math
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Design Feature: Type-checking

● Avoids silly errors like: “Math is driving a car”.

● Provides drastic reduction to complexity

induced by the grounding problem, by 

increasing graph sparsity, reducing storage 

and computations.

● Significantly improves utility in a variety of

application domains.

eve cal

art
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Design Feature: Type-checking

● Optional feature. Can be turned on/off.

● Specified at the time of building the graph: if 

we have prior knowledge about constraints 

over predicate-atom pairs.

eve cal

art
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A literal is any ground atom or a negation of a ground atom.

Traditional logic frameworks only support atoms or its negation, not both.

In PyReason -

● Atoms and their negations can be simultaneously implemented.

● We define both as separate ground atoms, and,

● We define a consistency constraint that prevents an atom and its 

negation to co-exist.

Design Feature: Support for literals
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Defining literals:

I(at_home(x),t) = [1,1] and I(not_home(x),t) = [1,1] ✘

Modelling relationships between pairs which might become inconsistent:

I(bachelor(x),t) = [1,1] and I(married(x),t) = [1,1] ✘

I(fit(x),t) = [0.6,1] and I(injured(x),t) = [0,0.8] ✘

Design Feature: Consistency for pairs
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Checking:

I1 = [L1, U1]

I2 = [L2, U2]

Then they are consistent,

Iff L1 ≤ 1 - L2 and  U1 ≥ 1 - U2

Resolution:

I1 = I2 = [0, 1]

Design Feature: Consistency for pairs



Copyright © 2022 Arizona Board of Regents

Checking:

Icurrent = [L1, U1]

Inew = [L2, U2] from outcome of a rule

Then they are consistent,

Iff L1 ≤ U2     and     U1 ≥ L2 and     L2 ≤ U2 i.e. from same lower lattice

Resolution:

Iupdated = [0, 1]

Design Feature: Consistency during execution
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Integration within ARL Battlespace

Modelling the Game World

Interfacing with PyReason
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● The game board is modeled as a graph:

○ Each square is a node.

○ Edges between neighbouring squares, air and land.

Modeling the Game World
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● The game board is modeled as a graph:

○ Each square is a node.

○ Edges between neighbouring squares, air and land.

● Other components can be modeled as -

○ Units (Soldier, Tank, Truck, Flag, Airplane, Missiles) are nodes, 

with attribute ‘type’ = {air, ground, immovable}.

○ Players (A,B,C,D) are nodes.

Modeling the Game World
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● The game board is modeled as a graph:

○ Each square is a node.

○ Edges between neighbouring squares, air and land.

● Other components can be modeled as -

○ Units (Soldier, Tank, Truck, Flag, Airplane, Missiles) are nodes, 

with attribute ‘type’ = {air, ground, immovable}.

○ Players (A,B,C,D) are nodes.

○ Edges between Units and Squares have at(U,S).

○ Edges between Players and Units have of(P,U).

. . .

Modeling the Game World
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● Rules:

○ All possible actions e.g. Advancement changes location of an unit

e.g. Rotate changes orientation.

Modeling the Game World



Copyright © 2022 Arizona Board of Regents

● Rules:

○ All possible actions e.g. Advancement changes location of an unit

○ Movement of missiles are facts

Modeling the Game World
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● Rules:

○ All possible actions e.g. Advancement changes location of an unit

○ Movement of missiles are facts

○ Causal effects of actions e.g. Overlap leads to mutual destruction

Advance U1, S1

Advance U2, S1

Trigger: Destroy U1, U2

Modeling the Game World
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● Rules:

○ All possible actions e.g. Advancement changes location of an unit

○ Movement of missiles are facts

○ Causal effects of actions e.g. Overlap leads to mutual destruction

. . .

● Termination conditions (flag capture / annihilation) is captured in the 

body of a rule, which when fired ends the game.

Modeling the Game World
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● Rules:

○ All possible actions e.g. Advancement changes location of an unit

○ Movement of missiles are facts

○ Causal effects of actions e.g. Overlap leads to mutual destruction

. . .

● Termination conditions (flag capture / annihilation) is captured in the 

body of a rule, which when fired ends the game.

● At initialization, type-checking ensures attributes are matched to 

appropriate nodes and edges in the graph.

Modeling the Game World
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Input: Current State

List of interpretations with bounds in .yaml format

Course of Action

List of tuples of the form (action, player, unit, time)

Output: Next States

List of interpretations with bounds in .pkl format

Interfacing with PyReason
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Thank You


