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1. Logical Neural Network



1. Logical Neural Network

LNN includes two phases: Inference and Training.


• Inference: 

‣ Evaluation of the activation function for the 

lower and upper bounds.

‣ Upward and downward passes through each 

neuron, while monotonically tightening the 
bounds until convergence.



1. Logical Neural Network (contd.)

• Training/Learning: 

Loss function: 

‣ Supervised labels are provided for truth bounds on 

a node in the that gives the standard mismatch loss 
at a neuron.


‣ Unsupervised loss that accounts the contradictions 
at each neurons.


‣ Loss is evaluated by


where  denotes the weights,  the truth threshold 
meta-parameter,  is a regularizing meta-
parameter, and ,  represent the feasible sets 
for  and . 

w α
τ

𝒲 𝒜
w α

min
w∈𝒲, α∈𝒜

l(w, α) + τψ(w, α)



1. Logical Neural Network (contd.)

Truth table for a binary conjunction neuron

-  and  are real valued 
inputs


-  


-

p q

xF = 1 − α
xT = α

The activation function, , is defined by 
,


with                  

ϕ
p ∧ q = ϕ(β − wp(1 − p) − wq(1 − q))

w ≥ 0 β ≥ 0 0.5 < α ≤ 1

Neuron’s parameters  ; meta-parameter (w, β) (α)



1.1 LNN- Problem Formulation
The LNN training problem can be formulated with the weighted Łukasiewicz 
activation function


where, 


 ,  denote the loss functions at each neuron, 


 is the number of neurons, 


 is a concatenation of the bias and weights that need to be 
learned at the  neuron, 


 stands for the meta-parameters, 


 denotes the  entry of weight at the  neuron, and 


 is some scalar. 

li ψi

n
xi = [β; wi]

ith

yi = [α]
xij jth ith

s > 0



1.1 LNN- Problem Formulation (contd.)
We have the following general non-convex 
constrained problem to solve for: 


where

are non-convex functions, and  denotes the total 
number of constraints at each neuron. 

We can write the augmented Lagrangian (AL) of the 
above problem as


m



2. Non-convex Constraint Problems in LNN



2. Non-convex Constraint Problems in LNN
• Real world data contains logical inconsistencies due to which 

the original LNN does not perform well.

• Humans have been familiar with convex optimization for 

many years compared to the few contexts where they had to 
deal with non-convex optimization. 


• However, over the last decade, non-convex optimization 
became more crucial and important than before. 


• In fact, with the emergence of deep learning, researchers 
needed to deal with non-convex optimization more and more 
given the benefits hidden behind its complexity. 



2.1 Convex Optimization Problem
• Convex optimization is a subfield of mathematical 

optimization that deals with minimizing specific convex 
function over convex sets. 


• It is interesting since in many cases, convergence time is 
polynomial. 


• Linear programming and least square problem are special 
cases of convex optimization. 


• If we can formulate a problem as a convex optimization 
problem, then we can solve it efficiently, just as we can solve 
a least square problem efficiently.



2.2 Non-convex Optimization Problem
• A non-convex optimization is any problem where the objective or any of the 

constraints are non-convex. 

• Even simple looking problems with as few as ten variables can be extremely 

challenging, while problems with a few hundreds of variables can be intractable. 

• Here, generally, we face the obligation to compromise, for example - giving up 

seeking the optimal solution, which minimizes the objective over all feasible 
points. 


• This compromise opens a door for local optimization where intensive research 
has been conducted and many developments were achieved. 


• As a result, local optimization methods are widely used in applications where 
there is value in finding a good point, if not the very best.



2.3 Why is non-convex optimization needed?
• Non-convex optimization existed since the early days of operations research. 

Still, the topic gained more interest and focus with the emergence of DL in the 
recent years. In fact, neural networks are universal function approximatons. 


• With enough neurons, they have the ability to approximate any function well. 

• Among the functions to be approximated, non-convex functions are gaining 

more focus. To approximate them, convex functions cannot be good enough. 
Hence, the importance of using non-convex optimization. 


• The freedom to express the learning problem as a non-convex optimization 
problem gives immense modeling power to the algorithm designer. 


• Despite the guarantees achieved in individual instances, it is still complex to 
unify a framework of what makes non-convex optimization easy to control.



2.4 Non-convex Optimization Convergence
• For non-convex optimization, many convex optimization techniques can be used 

such as stochastic gradient descent (SGD), mini-batching, stochastic variance-
reduced gradient (SVRG), and momentum. There are also specialized methods 
for solving non-convex problems known in operations research such as 
alternating minimization methods, branch-and-bound methods. But, these 
methods are not, generally, very popular for ML problems. In the same context, 
there are varieties of theoretical convergence results including convergence to a 
stationary point, convergence to a local minimum, local convergence to the 
global minimum, and global convergence to the global minimum. 


• Non-convex SGD converges with a slow theoretical rate, but not necessarily to a 
local minimum, which certainly means it doesn’t necessarily reach the global 
optimum. These theoretical insights can be strengthened through the 
incorporation of stronger conditions and assumptions. With the previous ones, 
we can prove its convergence to a local minimum with (or without) an explicit 
rate of convergence. Sometimes, if we start close enough to the global optimum, 
we can achieve a local convergence to the global optimum. However, it is very 
expensive in terms of time and applied to specific cases. Beyond that, the global 
convergence to the global minimum happens when we can converge wherever 
we initialize. 



3. Algorithms Design



3.1 Prime-Dual Method
• In mathematical optimization theory, duality or the duality principle is the 

principle that optimization problems may be viewed from either of two 
perspectives, the primal problem or the dual problem. If the primal is a 
minimization problem then the dual is a maximization problem (and vice 
versa). Any feasible solution to the primal (minimization) problem is at 
least as large as any feasible solution to the dual (maximization) 
problem. Therefore, the solution to the primal is an upper bound to the 
solution of the dual, and the solution of the dual is a lower bound to the 
solution of the primal. In general, the optimal values of the primal and 
dual problems need not be equal. Their difference is called the duality 
gap.


• Strong Dual: For convex optimization problems, the duality gap is zero 
under a constraint qualification condition.


• Weak Dual: duality gap is greater than zero.

min c𝕋 x s . t . Ax ≥ b x ≥ 0 max b𝕋 y s . t . ATy ≤ c y ≥ 0



3.2 Duality of convex objective function
Given a minimization problem, , 


subject to     

                     


we define the Lagrangian,





and the Lagrange dual function, 

                 


The subsequent dual problem is:

             subject to   


min
x∈ℝn

f (x)

hi(x) ≤ 0, i = 1,...,m
lj(x) = 0, j = 1,...,r

L(x, u, v) = f (x) +
m

∑
i=1

uihi(x) +
r

∑
j=1

vjlj(x)

g(u, v) = min
x∈ℝn

L(x, u, v)

max
u∈ℝm,v∈ℝr

g(u, v) u, v ≥ 0



3.2 Duality of convex objective function (contd.)

Important properties:

• Dual problem is always convex, i.e.,  is always concave (even if primal problem is 

not convex)

• The primal and dual optimal values,  and , always satisfy weak duality: 




• Slater’s condition: for convex primal, if there is an  such that: 
   and   


then strong duality holds: 


Given primal feasible  and dual feasible , , the quantity  is called 
the duality gap between  and , . Note that  


So, if the duality gap is zero, then  is primal optimal (and similarly, ,  are dual 
optimal).

From an algorithmic viewpoint, provides a stopping criterion:

if ,    then we are guaranteed that    

g

f * g *
f * ≥ g *

x
h1(x) < 0,...hm(x) < 0 l1(x) = 0,...lr(x) = 0

f * = g *

x u v f (x) − g(u, v)
x u v f (x) − f * ≤ f (x) − g(u, v)

x u v

f (x) − g(u, v) ≤ ϵ f (x) − f * ≤ ϵ



3.3 Complementary Slackness Condition
If  primal feasible and  dual feasible, then  primal optimal and  dual 
optimal iff  


• , and  


• .


If  and  are the optimal solution of both primal and dual, then we can 
conclude that 


Primal: 


Dual: 

x y x y

xj(yT Aj − cj) = 0 ∀j
yi(bi − Aix) = 0 ∀i

X0 Y0
CX0 = bTY0

max Z = CX s.t. {AX ≤ b
X ≥ 0

min W = bTY s.t. {ATY ≥ CT

Y ≥ 0



3.4 Lagrange Multipliers
• In mathematical optimization, the method of Lagrange multipliers is a strategy for 

finding the local maxima and minima of a function subject to equality. 

• The basic idea is to convert a constrained problem into a form such that 

the derivative test of an unconstrained problem can still be applied. 

• The relationship between the gradient of the function and gradients of the 

constraints rather naturally leads to a reformulation of the original problem, 
known as the Lagrangian function.


     


• Lagrange wrote down a special new function which takes in all the same input 
variables as  and , along with the new , thought of now as a variable rather 
than a constant.


                


• Set the gradient of  equal to the zero vector. In other words, find the critical 
points of .

L(x1, x2, λ) = f (x1, x2) + λg(x1 . x2)

f g λ

∂L
∂x1

= 0,
∂L
∂x2

= 0,
∂L
∂λ

= 0

L
L



Example

▿ L =

δ(2x + y − λ(x2 + y2 − 1))
δx

δ(2x + y − λ(x2 + y2 − 1))
δy

δ(2x + y − λ(x2 + y2 − 1))
δλ

=
2 − 2λx
1 − 2λy

−x2 − y2 + 1



3.5  Karush-Kuhn-Tucker Condition (saddle point 
theorem)

• In the convex and non-convex optimization theory, Karush-Kuhn-Tucker condition is the 
necessary condition for a constrained objective function to have the most optimized 
solution. 


• Allowing inequality constraints, the KKT approach to nonlinear programming generalizes 
the method of Lagrange multipliers, which allows only equality constraints. 


• Similar to the Lagrange approach, the constrained maximization (minimization) problem is 
rewritten as a Lagrange function whose optimal point is a saddle point, i.e. a global 
maximum (minimum) over the domain of the choice variables and a global minimum 
(maximum) over the multipliers, which is why the Karush–Kuhn–Tucker theorem is 
sometimes referred to as the saddle-point theorem. 

min
x∈ℝn

f(x)

hi(x) ≤ 0, i = 1,...,m

lj(x) = 0, j = 1,...,r

subject to

0 ∈ ∂f (x) +
m

∑
i=1

ui∂hi(x) +
r

∑
j=1

vj∂lj(x) (stationary)

ui · hi(x) = 0, ∀i (complementary slackness)

hi ≤ 0, li(x) = 0, ∀i, j (primal feasibility)

ui ≥ 0, ∀i (dual feasibility)



3.5  Karush-Kuhn-Tucker Condition (saddle point 
theorem) (contd.)

• Let  and ,  be primal and dual solutions with zero duality gap (strong duality 
holds). Then, 




         


         


         

• Two things are important:


‣ The point  minimizes  over  . Hence the sub-differential of 
 must contain 0 at  (this is exactly the stationarity condition).


‣ We must have , and since each term here is , this 

implies   (this is exactly complementary slackness).


• Conclusion: If  and ,  are primal and dual solutions, with zero duality gap, then 
, ,  satisfy the KKT conditions.

x * u * v *

f (x*) = g(u * ,v*)

= minx∈ℝ f (x) +
m

∑
i=1

u*i hi(x) +
r

∑
j=1

v*j lj(x)

≤ f (x*) +
m

∑
i=1

u*i hi(x) +
r

∑
j=1

v*j lj(x)

≤ f (x*)

x * L(x, u * ,v*) x ∈ ℝn

L(x, u * ,v*) x = x *
m

∑
i=1

u*i hi(x*) = 0 ≤ 0

u*i hi(x*) = 0 ∀i

x * u * v *
x * u * v *



3.6  Dual Ascent Method
• Dual Gradient Descent is a popular method for optimizing an objective 

under a constraint. In reinforcement learning, it helps us to make better 
decisions. 




• The key idea is transforming the objective into a Lagrange dual function 
which can be optimized iteratively.







where  is a scalar which we call the Lagrangian multiplier.


• Augmented Lagrangian:


min
x

f(x) such that C(x) = 0

L(x, λ) = f(x) + λC(x)
g(λ) = L(x * (λ), λ) where x * arg min

x
L(x, λ)

λ

Lc(x, λ) = f(x) + λTh(x) +
c
2

∥h(x)∥2



3.6  Dual Ascent Method (contd.)

• The dual function L is a lower bound for the original optimization 
problem. Indeed, if the function f is a convex function, the strong 
duality will often hold which say the maximum value of g equals the 
minimum values of the optimization problem. Hence, if we find λ 
that maximize g, we solve the optimization problem.


Step-1                  


Step-2          


Step-3                

m

∑
i=1

u*i hi(x*) = 0

L(x, u, v) = f(x) +
m

∑
i=1

uihi(x) +
r

∑
j=1

vjlj(x)

g(u, v) = min
x∈ℝn

L(x, u, v)



Example



3.7  Penalty function

• Penalty methods are a certain class of algorithms for 
solving constrained optimization problems.


• A penalty method replaces a constrained optimization 
problem by a series of unconstrained problems whose 
solutions ideally converge to the solution of the original 
constrained problem. 


• The unconstrained problems are formed by adding a 
term, called a penalty function, to the objective 
function that consists of a penalty parameter multiplied 
by a measure of violation of the constraints. 


• The measure of violation is nonzero when the 
constraints are violated and is zero in the region where 
constraints are not violated.



Example
• We are solving the following constrained problem:


• This problem can be solved as a series of unconstrained minimization problems


Where,


• In the above equations,  is the exterior penalty function while   are the 
penalty coefficients. 


• In each iteration k of the method, we increase the penalty coefficient  (e.g. by a 
factor of 10), solve the unconstrained problem and use the solution as the initial 
guess for the next iteration. 


• Solutions of the successive unconstrained problems will eventually converge to the 
solution of the original constrained problem.           

g(ci(x)) σk

σk

s.t. ci(x) ≤ 0,∀i ∈ I
min f (x)

min Φk(x) = f (x) + σk ∑
i∈I

g(ci(x))

g(ci(x)) = max(0,ci(x))2



3.8  Augmented Lagrangian Method

• Augmented Lagrangian methods are a certain class 
of algorithms for solving constrained optimization problems. 


• They have similarities to penalty methods in that they 
replace a constrained optimization problem by a series of 
unconstrained problems and add a penalty term to 
the objective; the difference is that the augmented 
Lagrangian method adds yet another term, designed to 
mimic a Lagrange multiplier. 



3.8  Augmented Lagrangian Method (contd.)

• Convergence of dual methods can be greatly improved by 
utilizing augmented Lagrangian. Start by transforming primal.


• The augmented Lagrangian is (with ):ρ > 0

where f : ℝn → ℝ and h : ℝn → ℝm are continuous,  and X is closed.

minimize f (x)
subject to x ∈ X, ∥Ax − b∥ = 0,

x ∈ ℝnf (x) +
ρ
2

Ax − b
2

s . t . Ax = b

L(x, λ; ρ) := f (x) + λT(Ax − b) +
ρ
2

Ax − b
2
2

Lagrangian Augmentation

λi+1 = λi + μkci(xk)

xk = arg min Φk(x)



3.9 iADMM



3.9 iADMM (contd.)

min
x∈𝒳, y∈𝒴

max
λ≥0

ℒ(x, y, λ)

θt+1 = arg min
θ∈𝒳

𝓛(θ, yr, λr) +
αr

2
∥θ − θt∥2

ϑt+1 = arg min
ϑ∈𝒴

𝓛(xr+1, ϑ, λr) +
βr

2
∥ϑ − ϑt∥2

λr+1 = [λr + γr+1 g(xr+1, yr+1)]+

Step-1

Step-2

Step-3



4. Theoretical Assumptions



4. Assumptions



Analysis and Results



Toy Example

f(x, y) = xΦ2y − 2 ⋅ 1

where  = component wise squared of .xΦ2 x

Constraints:   and  xTy − 2 ≤ 0 1 − xTy ≤ 0

• For a large inner loop 
step size, the iALM 
algorithm will diverge


• iADMM converges 
much faster than 
iALM



Real World Problem Analysis: Congressional Voting 
Records Data Set

• The dataset contains 435 data points and 16 attributes 

• Test to see if the network learns the weights on its own

• PGD => Projected Gradient Descent (blue)

• Two types of iADMM methods are used:


‣ iADMM where  is learnable (orange)


‣ iADMM where  is not learnable (yellow)

α
α

Ref: https://archive.ics.uci.edu/ml/datasets/congressional+voting+records

https://archive.ics.uci.edu/ml/datasets/congressional+voting+records


Real World Problem Analysis: Congressional Voting 
Records Data Set (contd.)

Loss value of the LNN Feasibility error



Takeaways

• The LNN model with the learnable  parameter 
performed better than the rest for this particular 
problem with minimal constraint violation


• iADMM shows some oscillation during the process of 
convergence due to the nature of the min-max game


• The solution with PGD had logical inconsistencies 

• Even though all models had approximately similar 

loss values, the iADMM model had more feasibility in 
its solution

α
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