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ABSTRACT
Bad actors in the maritime industry engage in illegal behaviors

after disabling their vessel’s automatic identification system (AIS)

- which makes finding such vessels difficult for analysts. Machine

learning approaches only succeed in identifying the locations of

these “dark vessels” in the immediate future. This work leverages

ideas from the literature on abductive inference applied to locating

adversarial agents to solve the problem. Specifically, we combine

concepts from abduction, logic programming, and rule learning to

create an efficient method that approaches full recall of dark vessels

while requiring less search area than machine learning methods.

We provide a logic-based paradigm for reasoning about maritime

vessels, an abductive inference query method, an automatically

extracted rule-based behavior model methodology, and a thorough

suite of experiments.
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1 INTRODUCTION
Maritime vessels are equipped with the automatic identification

system (AIS) to track their position on the globe [26]. However, ma-

licious actors often disable this system - becoming “dark” when con-

ducting illegal activities. Understanding these “dark vessel” has im-

plications for security [27], maritime analysis [20, 32], planning [3],

and forecasting [44]. Recently, with the support of the U.S. Treasury

and European Union in enforcing maritime services prohibitions for

seaborne Russian oil [40], industry efforts have been made in real-

world scenarios including piracy, illegal fishing, human trafficking,

border protection, and sanction violations [38, 41] highlighting the

increasing need for efficient dark vessel detection. Recent machine
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learning (ML) approaches are limited to trajectory prediction with a

time horizon of less than an hour [13, 18, 23, 24] or rely on satellite

data susceptible to weather conditions [1, 7, 12]. Other approaches

require expert intervention using radio frequency doppler shift [38].

These approaches are not data-efficient and cannot explain why

they determined a given result. We note that from a practical per-

spective, the limited forward-prediction value of ML approaches is

significant - as the ability to find the dark vessel locations degrades

with increased search area and resources. Meanwhile, recent work

on generating faux trajectories for human movement suggests that

abductive inference can address some of these difficulties [5] - al-

though that work does not predict real trajectories and was not

applied to the maritime domain. In this paper, we combine ideas

from abductive inference, logic programming, and rule learning

to identify locations of dark vessels based on partial trajectory

information. We show that we are able to approach full recall of

dark vessel trajectories requiring less than half of the area coverage

required by our machine learning baselines. Further, we found that

the recall performance of the abduction-based approach increases
with search area and resources - unlike the degradation experienced

with ML. We also demonstrate data efficiency, efficient inference

calculations, and describe our ongoing efforts to deploy this tech-

nology in an operational platform. After a review of background

material (Section 2) we make the following contributions:

(1) We provide a formalism for reasoning about maritime vessels

including a logical language for expressing maritime vessel

trajectories (Section 3.1) and the framing of an abduction

problem (Section 3.2) that include a top-𝑘 approximation

that we explore empirically in this paper.

(2) We provide a simple but effective rule-learning approach to

agent behavior modeling (Section 3.3) that enables not only

allows for data-driven (and data-efficient) abduction but also

affords explainability of the results.

(3) We provide a suite of experimental results (Section 4) that

demonstrate how the abduction approach is area-efficient

by saturating with 157% higher recall than baselines for an

area of 30𝑘𝑚2
, provides long-term predictions where ML

methods fail, and provides improved performance of 476%

in recall with additional resources.

(4) We also show that the approach is efficient in both terms of

runtime and data as it can be instantiated with very little

data - even a single training trajectory (providing comparable
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performance of 0.62 precision to the use of all historical data -

where we show ML catastrophically fails), as well as provide

various ablation studies.

(5) We describe our efforts to deploy this system in an opera-

tional platform to support real-world analysts in dark vessel

discovery (Section 5).

2 BACKGROUND
Dark Vessel Analytics. Maritime vessels employ deceptive ship-

ping practices to benefit from violating international law, con-

ducting illicit operations, violating environmental protections, and

avoiding sanctions. In the 18th century, vessels disguised their Jolly

Roger flags to deceive prospective victims before attacking them.

Currently, vessels manipulate their AIS to avoid being monitored

while performing illicit activities. On a monthly average, 800, 000

dark activity events were detected in 2020− 2022 [41]. Lately, in the

aftermath of the Russia-Ukraine war, sanctions on maritime trade

have evolved [40], and monthly dark activity rose by 216% [42].

More recently, in 2024, there has been a 340% rise in dark activ-

ity [25] much of which focused in the Black Sea (the area used in our

experiments in Section 4). Such activities when gone undetected,

can have realistic detrimental impacts on marine ecosystems, public

safety, trade, and security. To monitor and control such behavior, ef-

forts from government agencies [1, 40], and industry [7, 22, 38, 41],

have invested in various efforts that began in earnest with the

DARPA PANDA program over a decade ago [15]. These program

have led to a line of research that we describe in the next subsection.

Related Work. Earlier work on maritime vessel trajectory predic-

tion relied on Markov models [43, 45], extensions have also been

applied to make efficient predictions. Although they work well for

simple finite parameters, they are unable to capture complex pat-

terns and this led to the later use of deep learning techniques for the

problem - enabled by the availability of large datasets of maritime

trajectories. To address the complexities of spatio-temporal interac-

tions, [10] provides a sequence-to-sequence RNN to predict future

maritime trajectories. Related work looks to predict a point ship

location using a LSTM-transformer combination [16, 46]. These

methods differ from the approach in this paper in that they only

provide accurate predictions up to an hour in the future, require

large amounts of training data, and do not afford explainability (so

the analyst user cannot easily justify the dark vessel predictions

to operational personnel). Maritime trajectory patterns have also

been studied widely with for traffic management [19] with an un-

supervised hierarchical method and safety [29] where they mine

patterns to focus on shipping route characterization and anomaly

detection. These methods are valuable for understanding typical

and atypical trajectory behavior, but they are primarily focused on

identifying patterns after the fact. In contrast, our method leverages

trajectory behavior through abductive reasoning to infer an agent’s

future locations. We also note that this work differs from other

maritime applications of AI such as vessel detection [28] where

a model generates bounding boxes for the object vessel in an im-

age or tracking it in a video [21]. This work also differs from a

complementary line of work of patrolling strategies [4, 6, 9] that

generates optimal patrol locations to cover a set of targets as we

focus on generating locations to capture a target at a time horizon

(as opposed to developing patrol plans for a non-adversarial agent).

Trajectory forecasting is a separate line of work, though this

work is focused on short-time horizon prediction of human or

robotic movement as opposed to the long-time horizon, global-scale

prediction of maritime vessels. Some other notable approaches use

deep learning architectures based on convolutional networks [23],

adversarial methods [13], and autoencoders [24] as well as Marov

chains [11, 14].

Abductive inference has provided a natural paradigm for locat-

ing unobserved adversarial agents - requiring much less data and

providing more transparency than ML methods. Early work in this

area offered simple models relating the adversary’s point location

to geospatial phenomenon [37]. Later work took a data-driven ap-

proach to learn a model of the adversarial behavior that enables

abductive inference [31]. None of the aforementioned prior work on

abduction involves trajectories nor does it involve making predic-

tions of agent behavior over a long time horizon. Complementary

to abduction work is the generation of spatial regions [8], which

aims to maintain meaningful spatial boundaries for transportation

services by partitioning an area of interest via region clustering (we

employ similar techniques durin pre-processing). More recent work

on abductive inference has been applied to human movement [5].

However, that work is designed to produce faux movement trajec-

tories and not identify actual future agent locations. We note that

it relies on a different approach (the use of A*) to create movement

trajectories as opposed to this work that examines the problem as

a top-𝑘 entailment query.

3 APPROACH
3.1 Logic for Maritime Agents
Logical Language. To define various aspects of the maritime do-

main environment, we use an annotated language [17, 34] with

temporal semantics [2, 5, 36]. The language is defined with a set of

constants that is partitioned into multiple domains (D𝑖 ⊂ C), one
such subset,D𝑙𝑜𝑐 , is a set of all potential locations of the vessel in a

continuous space (called an “area of interest” or AOI) of dimensions

𝑀 × 𝑁 . As usual in first-order logic, we define a corresponding

set of variables (V), and a set of predicate symbols (P). Additional
sets of constants include Dr - which is the set of all regions within

the AOI (and in practice, we will compute this based on histori-

cal trends ahead of time). When it is relevant, we shall subscript

such constants with the upper-right and lower-left locations - e.g.

r𝑙1,𝑙2 ∈ Dr is a region with upper-right corner 𝑙1 and lower-left

corner 𝑙2 (note 𝑙1, 𝑙2 ∈ D𝑙𝑜𝑐 ). In our definitions, we will treat a r as
a set of all locations enclosed by the region. We also define setD𝑎𝑔𝑡

which is the set of agents (in our application, shipping vessels).

In addition to the first-order logic syntax and semantics, we allow

for annotation [ℓ,𝑢] which is simply a subset of the unit interval

[0, 1] - which generalizes both fuzzy and classical logic. We write

𝑎 : [ℓ,𝑢] to mean that 𝑎 has truth value associated with interval

[ℓ,𝑢]. We refer the reader to [17, 34] for lattice-theory justification

of this approach and how it generalizes other logical paradigms. We

also note that we have learned our logic programs in a way to treat

these bounds as confidence (see Section 3.3). We also follow the ex-

tension of temporal syntax and semantics [2, 5] to form temporally



annotated facts (TAFs) and annotated formulae. For an annotated

literal 𝑓 that is true at time 𝑡 , 𝑓𝑡 is a TAF. Annotated formulae are

constructs formed with operators like AFTER(𝑓 , 𝑓 ′). For annotated
formulae 𝑓 , 𝑓 ′, AFTER(𝑓 , 𝑓 ′) is interpreted as 𝑓 occurs after 𝑓 ′.

Example 3.1 (Language). In our use-case, we consider an agent
𝑎𝑔𝑡 ∈ D𝑎𝑔𝑡 that travels among 𝑙𝑜𝑐1, 𝑙𝑜𝑐2.. ∈ D𝑙𝑜𝑐 in an AOI.
The agent can be at a location covered by a region r ∈ Dr where
r ⊆ D𝑙𝑜𝑐 . We also define domain-specific binary predicate at where
at(𝑎𝑔𝑡, r) is a ground atom for an agent 𝑎𝑔𝑡 ∈ D𝑎𝑔𝑡 at a located
in r indicating that the agent is within the region of r. We also de-
fine domain-specific unary predicates formed with D𝑎𝑔𝑡 constants:
nearport, change-direction, high-speed, low-speed, hotspot, draught,
ais-off and stay (expressing that the agent is near a port, changed its
course sharply, has a high/low speed compared to an average, at a
high-density hotspot, varied its draught, stopped transmitting AIS
signals, and is at an anchor point by staying put for a long duration).

As per previous work on temporal annotated logic [2, 5, 36],

given a set of timepoints 𝑇 , a set of all (ground) literals G, an
interpretation 𝐼 is any mapping G×𝑇 → L. We define a satisfaction

relationship “|=” and rules for temporally annotated extensions [2,

36]. A programΠ is a set of rules, where each has an annotated atom

in the head and a conjunction of annotated formulae in the body.

An interpretation 𝐼 is said to satisfy Π, if and only if 𝐼 satisfies every
rule and TAF in Π. The minimal model is an interpretation that

can be thought of everything that can be concluded from deductive

inference and commonly used for entailment queries in annotated

logic [2, 17, 34, 36]. This is often computed using a fixpoint operator

as done in the aforementioned work - and refer the reader to the

well-established work on that topic for details. In this work, we

slightly abuse the notation of [17] and use Γ∗ (Π) to denote the

minimal model of Π.
Initial and Predicted Locations. In our problem, we must repre-

sent the initial conditions of the agent - in other words, the areas

the shipping vessel has traveled in the first part of its voyage. We

represent this simply with the logic program consisting of a set of

temporally annotated facts formed with the predicate at introduced
in Example 3.1. Here, we would expect fine-grain information on

the location of the shipping vessel from information such as AIS -

so each region (the second argument associated with the at-formed

temporally annotated fact). We can think of such an initial logic

program, Π𝑖𝑛𝑖𝑡 being complemented by an additional logic program

- also created with temporally annotated facts - used to represent

the agent’s behavior in the future - Π𝑝𝑟𝑒𝑑 . Intuitively, the elements

of Π𝑝𝑟𝑒𝑑 would resemble the elements of Π𝑖𝑛𝑖𝑡 except that they

would occur after the facts of Π𝑖𝑛𝑖𝑡 . Further, in practice, we would

expect regions associated with Π𝑝𝑟𝑒𝑑 to be larger than Π𝑖𝑛𝑖𝑡 . We

shall refer to these logic programsΠ𝑝𝑟𝑒𝑑 ,Π𝑖𝑛𝑖𝑡 as region set program
and provide an example below.

Example 3.2. Consider an agent 𝑎𝑔𝑡 ∈ D𝑎𝑔𝑡 in the Figure 10
that travels from time 𝑡1 to 𝑡𝑖 (we notate timestamps to be a set of
timepoints = {𝑡1, ., 𝑡𝑖 , .., 𝑡𝑛} with a precedence relationship) and then
goes dark at 𝑡𝑖 , a time horizon 𝑡𝑖+1, then the initial conditions are
represented as follows, Π𝑖𝑛𝑖𝑡 = { at(𝑎𝑔𝑡, r(31.14,46.12),(31.11,46.09) )𝑡1
, .., at(𝑎𝑔𝑡, r(30.88,46.48),(30.86,46.45) )𝑡𝑖 } and the predictions are repre-
sented as follows, Π𝑝𝑟𝑒𝑑 = {at(𝑎𝑔𝑡, r(30.87,46.51),(30.85,46.48) )𝑡𝑖+1 ,

at(𝑎𝑔𝑡, r(30.82,46.51),(30.79,46.48) )𝑡𝑖+1 ,at(𝑎𝑔𝑡, r(30.88,46.48),(30.85,46.45) )𝑡𝑖+1
,
at(𝑎𝑔𝑡, r(30.87,46.50),(30.84,46.47) )𝑡𝑖+1 ,at(𝑎𝑔𝑡, r(30.87,46.49),(30.84,46.47) )𝑡𝑖+1 }.

Behavior Rules.We also envision a logic program consisting of

a set of behavior rules of what the shipping vessel normally does

(Π𝑏𝑒ℎ𝑎𝑣 ). While it is possible to make these rules function as hard

constraints, we instead make them soft constraints and instead

measure how well an agent complies with these rules. This allows

us to easily build a parsimony function. We provide example rules

mined from data in Table 1.

Ground Truth Trajectories. Based on historical data, we also as-

sume we have trajectory data for a given agent that occurs outside

of Π𝑖𝑛𝑖𝑡 . For a given agent, such a trajectory is simply a series of

location-time tuples that were observed in the ground-truth data. So

for agent𝑎𝑔𝑡 , trajectory𝜏𝑎𝑔𝑡 = ⟨(𝑙𝑜𝑐1, 𝑡1), . . . , (𝑙𝑜𝑐𝑖 , 𝑡𝑖 ), . . . , (𝑙𝑜𝑐𝑛, 𝑡𝑛)⟩.
We will define a notion of entailment of a trajectory at the syntactic

level (though it is trivial to derive a semantic version). We say that

program Π entails an agent’s trajectory 𝜏𝑎𝑔𝑡 if for all (𝑙𝑜𝑐, 𝑡) ∈ 𝜏𝑎𝑔𝑡
there is some TAF at(𝑎𝑔𝑡, r)𝑡 ∈ Π (which occurs at the same time)

such that 𝑙𝑜𝑐 ∈ r.

Example 3.3. Following the notion built in Example 3.2, the tra-
jectory for agent 𝑎𝑔𝑡 is, 𝜏𝑎𝑔𝑡 = ⟨((31.11, 46.00), 𝑡1), .., ((30.87, 46.47)
, 𝑡𝑖 ), ((30.85, 46.48), 𝑡𝑖+1), ((30.81, 46.49), 𝑡𝑖+2), .., ((31.07, 46.00), 𝑡𝑛)⟩,
then Π𝑖𝑛𝑖𝑡

⋃
Π𝑝𝑟𝑒𝑑 |= 𝜏𝑎𝑔𝑡 . Note that tuples of 𝜏𝑎𝑔𝑡 - 𝜏1, 𝜏𝑖 are en-

tailed by TAFs in Π𝑖𝑛𝑖𝑡 - (31.11, 46.00) ∈ r(31.14,46.12),(31.11,46.09) ,
(30.87, 46.47) ∈ r(30.88,46.48),(30.86,46.45) and the others can be en-
tailed from Π𝑝𝑟𝑒𝑑 - (30.85, 46.48) ∈ r(30.87,46.50),(30.84,46.47) , and
(30.81, 46.49) ∈ r(30.82,46.51),(30.79,46.48) .

3.2 Abducing Agent Trajectories
For a single agent, we can think of finding Π𝑝𝑟𝑒𝑑 as an abduction

problem. In other words, given an agent 𝑎𝑔𝑡 , initial conditions Π𝑖𝑛𝑖𝑡 ,

behavioral rules Π𝑏𝑒ℎ𝑎𝑣 , and ground-truth trajectory 𝜏𝑎𝑔𝑡 we want

to find Π𝑝𝑟𝑒𝑑 such that:

(1) Π𝑖𝑛𝑖𝑡 ∪Π𝑏𝑒ℎ𝑎𝑣∪Π𝑝𝑟𝑒𝑑 is consistent (i.e., Γ∗ (Π𝑖𝑛𝑖𝑡 ∪Π𝑏𝑒ℎ𝑎𝑣∪
Π𝑝𝑟𝑒𝑑 ) exists).

(2) For each Π𝑝𝑟𝑒𝑑 entails 𝜏𝑎𝑔𝑡

If these criteria are met, we say Π𝑝𝑟𝑒𝑑 is an explanation for

⟨𝑎𝑔𝑡,Π𝑖𝑛𝑖𝑡 ,Π𝑏𝑒ℎ𝑎𝑣, 𝜏𝑎𝑔𝑡 ⟩. In this paper, our goal is to find a function

that, based on historical data, can return an explanation. We define

an explanation function as follows.

Definition 1 (Trajectory Explanation Function). Given
agents 𝑎𝑔𝑡1, . . . , 𝑎𝑔𝑡𝑛 , initial condition programs Π1

𝑖𝑛𝑖𝑡
, . . . ,Π𝑛

𝑖𝑛𝑖𝑡
, be-

havioral rules Π𝑏𝑒ℎ𝑎𝑣 , and trajectories 𝜏1, . . . , 𝜏𝑛 , we say an explana-
tion function 𝑓𝐸 that takes as arguments and agent and two programs
and returns a region set program such that 𝑓𝐸 (𝑎𝑔𝑡𝑖 ,Π𝑖

𝑖𝑛𝑖𝑡
,Π𝑏𝑒ℎ𝑎𝑣) is

an explanation for ⟨𝑎𝑔𝑡𝑖 ,Π𝑖
𝑖𝑛𝑖𝑡

,Π𝑏𝑒ℎ𝑎𝑣, 𝜏
𝑖 ⟩.

We note that Definition 1 is quite strict as it requires the result

of 𝑓𝐸 to produce a region set that models the entire trajectory for

all agents. At the same time, it does not distinguish among different

explanations. We introduce an approximation,
ˆ𝑓𝐸 that is designed

to meet the entailment requirement for as many agents as possible.

Our solution is to leverage a notion of parsimony, defining
ˆ𝑓𝐸 in

terms of a parsimony function (𝜎) - which maps agents and logic



programs to scalars. The idea is to use 𝜎 to measure the quality of

an explanation so that we can find quality explanations that cover

most of the ground truth trajectories. We provide the following

examples of such a function.

ˆ𝑓1 (𝑎𝑔𝑡,Π𝑖𝑛𝑖𝑡 ,Π𝑏𝑒ℎ𝑎𝑣) = argmax

Π′
𝜎 (𝑎𝑔𝑡,Π𝑖𝑛𝑖𝑡 ∪ Π𝑏𝑒ℎ𝑎𝑣 ∪ Π′)

ˆ𝑓2 (𝑎𝑔𝑡,Π𝑖𝑛𝑖𝑡 ,Π𝑏𝑒ℎ𝑎𝑣) = {argmax

𝜙
𝜎 (𝑎𝑔𝑡,Π𝑖𝑛𝑖𝑡 ∪ Π𝑏𝑒ℎ𝑎𝑣 ∪ {𝜙})}

In these two examples, we note the first has a combinatorial

flavor - finding the best set of regions, while the second identifies

the best singleton set - a notion that we can extend to find the top

𝑘 singletons (which correspond to the top 𝑘 regions formed with

the at). This can be easily solved by multiple entailment problems

for each relevant singleton formed from atoms created with set

Dr (which we assume is known a-priori). We also note that the

computation of
ˆ𝑓2 can be computed in linear time (in the number

of TAFs) which results directly from the prior results on annotated

logic [17, 34] and allows us to leverage existing efficient implemen-

tations [2]. We verify this empirically (Figure 9). In this work, we

examine the top-𝑘 variant of
ˆ𝑓2 and provide empirical evidence that

supports it. In practice, we compute top-k regions -corresponding

to the TAF 𝑎𝑡 (𝑎𝑔𝑡, r) (picking r from Dr) in parallel.

3.3 Rule-Based Agent Behavioral Modeling
As described in Section 3.1 we assume that there exists a set of

rules Π𝑏𝑒ℎ𝑎𝑣 specifying the behavior of the agents. While we could

design Π𝑏𝑒ℎ𝑎𝑣 to allow for hard constraints on consistency (and

while there are good reasons for doing so), we instead leverage the

fuzzy nature of our underlying logic (as described in Section3.1)

which can then allow us to easily build an explainable parsimony

function 𝜎 . Again, this function takes an agent and a logic program

as arguments (and the logic program, Π, is the union of the initial

conditions Π𝑖𝑛𝑖𝑡 and behavior rules Π𝑏𝑒ℎ𝑎𝑣 ) and returns a scalar.

As we use the logical paradigm of [17, 34], each logical atom is

associated with a subset of the unit interval - [ℓ,𝑢]. In this work,

define the parsimony function as the aggregate over the lower

bound of the interval, formally:

𝜎𝑡 (𝑎𝑔𝑡,Π) = 𝑙𝑏

(
Γ∗ (Π) (𝑛𝑜𝑟𝑚𝑎𝑙 (𝑎𝑔𝑡)) (𝑡)

)
Intuitively, we have a predicate 𝑛𝑜𝑟𝑚𝑎𝑙 , such that atoms formed

with that predicate are annotated with an interval measuring the

agent’s level of normalcy. Theminimal model of the program, Γ∗ (Π)
provides this annotation for a particular atom - here 𝑛𝑜𝑟𝑚𝑎𝑙 (𝑎𝑔𝑡)
(the normalcy of agent 𝑎𝑔𝑡 ) and time 𝑡 (we can define 𝜎 for a par-

ticular time - in practice we use the maximum time as it allows us

to cover long-term predictions). Finally, 𝑙𝑏 returns the lower bound

of the interval (as we will learn rules in a manner where we set the

upper bound to 1 to easily ensure consistency).

Rule Learning Algorithm. From the training set, a set of rules

is learned to model the normal behavior of the vessels based on

the historical co-occurrences of periodic sequences among similar

types of ships in similar waters. They are learned in a method akin

to rule learning in [5, 33] where we restrict the body to have a

single sequence of movement, refer Algorithm 1. These rules are

population-specific among the vessels. Here, consider 𝜏 to be a set of

the associated region of the trajectory. We note that Algorithm 1 is

quite efficient. It scans all trajectories in a given data. The quantity

of trajectory size in terms of regions can be treated as a constant

as it’s from a data source. Hence, it turns out that Algorithm 1 is

linear in terms of the size of the dataset (number of trajectories).

Algorithm 1 Behavioral Rule Learner

1: Input: A set of trajectories T, atom 𝑛𝑜𝑟𝑚𝑎𝑙 (𝑎𝑔𝑡)
2: Output: A set of rules Π
3: function Rules(𝐵𝑜𝑑𝑦)

4: Π← ∅
5: for all𝑚𝑜𝑣𝑒𝑠 ∈ 𝐵𝑜𝑑𝑦 do
6: if length(𝑚𝑜𝑣𝑒𝑠) = 2 then
7: mov← 𝐵𝑜𝑑𝑦 [𝑚𝑜𝑣𝑒𝑠] [0]
8: Π ← Π

⋃ {𝑛𝑜𝑟𝑚𝑎𝑙 (𝑎𝑔𝑡) : [ 𝐵𝑜𝑑𝑦 [𝑚𝑜𝑣𝑒𝑠 ]
𝐵𝑜𝑑𝑦 [𝑚𝑜𝑣 ] , 1] ←∧

𝑚∈𝑚𝑜𝑣𝑒𝑠𝑚(𝑎𝑔𝑡)}
9: end if
10: end for
11: return Π
12: end function
13: function TrainModel(T)

14: Initialize dictionary 𝐵𝑜𝑑𝑦 ← ∅
15: for all 𝜏 in T do
16: for 𝑛 ← 1 to length(𝜏)-1 do
17: 𝐵𝑜𝑑𝑦 [𝜏 [𝑛]] ← 𝐵𝑜𝑑𝑦 [𝜏 [𝑛]] + 1
18: 𝐵𝑜𝑑𝑦 [𝜏 [𝑛 − 1]] ← 𝐵𝑜𝑑𝑦 [𝜏 [𝑛 − 1]] + 1
19: 𝐵𝑜𝑑𝑦 [(𝜏 [𝑛−1], 𝜏 [𝑛])] ← 𝐵𝑜𝑑𝑦 [(𝜏 [𝑛−1], 𝜏 [𝑛])] +1
20: end for
21: end for
22: Π ←Rules(𝐵𝑜𝑑𝑦)
23: return Π
24: end function

Here the movement is considered to be among regions repre-

senting features like port regions, density-based historical hotspots,

anchor points, destinations, and typically observed maritime fea-

ture (speed over ground, course over ground, and heading) spikes

in the waters. We define two kinds of rules based on the movement

from the current region. It could be one (single-hop rules (SH)) or

multiple hops (multi-hop rules (MH)) away to the next region. For

multi-hop rules, intuition is to capture movements that occur even-

tually rather than in the next movement from the current region.

Some sample rules that we actually mined from maritime vessel

data are shown in Table 1. The annotations on the head of the rules

note the measure of confidence in the normalcy of the rule.

4 EXPERIMENTAL RESULTS
Setup. We parsed Automatic Identification System (AIS) data of

614 vessels across the Black Sea area of interest (AOI) from January

2022 to March 2023. This involves the trajectory data 𝜏 of each

vessel in addition to its dynamic and statistical information. This

data has trajectories of the length 2 to 165, 000 data points (i.e.,

the vessel’s latitude, longitude, timestamp, other features
1
) that

1
Information from an AIS signal, https://spire.com/whitepaper/maritime/introduction-

to-automatic-identification-systems-ais/

https://spire.com/whitepaper/maritime/introduction-to-automatic-identification-systems-ais/
https://spire.com/whitepaper/maritime/introduction-to-automatic-identification-systems-ais/


Table 1: Example Rules Mined From Historical Data

Rule Natural Language

𝑛𝑜𝑟𝑚𝑎𝑙 (𝐴𝐺𝑇 ) : [0.8, 1] ← 𝑛𝑒𝑎𝑟𝑝𝑜𝑟𝑡 (𝐴𝐺𝑇 ) : [1, 1] ∧ ℎ𝑖𝑔ℎ − ℎ𝑜𝑡𝑠𝑝𝑜𝑡 (𝐴𝐺𝑇 ) :

[1, 1] ∧ AFTER(ℎ𝑖𝑔ℎ − ℎ𝑜𝑡𝑠𝑝𝑜𝑡 (𝐴𝐺𝑇 ), 𝑛𝑒𝑎𝑟𝑝𝑜𝑟𝑡 (𝐴𝐺𝑇 )) : [1, 1]
Example Multi-hop rule. The confidence of a vessel

exhibiting normal behavior is at least 0.8 when the

agent goes from a near port to a high-hotspot region

in more than a single movement.

𝑛𝑜𝑟𝑚𝑎𝑙 (𝐴𝐺𝑇 ) : [0.9, 1] ← 𝑙𝑜𝑤 − 𝑠𝑝𝑒𝑒𝑑 (𝐴𝐺𝑇 ) : [1, 1] ∧ 𝑠ℎ𝑎𝑟𝑝 − 𝑐𝑜𝑢𝑟𝑠𝑒 −
𝑐ℎ𝑎𝑛𝑔𝑒 (𝐴𝐺𝑇 ) : [1, 1]∧AFTER(𝑠ℎ𝑎𝑟𝑝−𝑐𝑜𝑢𝑟𝑠𝑒−𝑐ℎ𝑎𝑛𝑔𝑒 (𝐴𝐺𝑇 ), 𝑙𝑜𝑤−𝑠𝑝𝑒𝑒𝑑 (𝐴𝐺𝑇 )) :
[1, 1]

Example Single-hop rule. The confidence of a vessel
exhibiting normal behavior is at least 0.9 when the

agent changes its course direction after lowering its

speed in a single movement.

span from 1 to 264 days. For all our experiments, we use a high

memory compute node, Dell PowerEdge R6525 with the AMD EPYC

7713 64-Core Processors and 2TB RAM, and a GPU node, Dell

PowerEdge R7525 with the AMD EPYC 7413 24-Core Processors,

512GB RAM along with three A30 GPUs. The region size is fixed

arbitrarily at 0.025° × 0.025° which comes to 5.45𝑘𝑚2
in our AOI

for our experiments unless specified.

Extending priorwork [18, 30]where similar vessels were grouped,

we perform trajectory clustering [39] to group trajectories into 9

subset. Clustering is performed with DBSCAN and we report aver-

age metrics across all clusters for both our method and our deep

learning baseline.

Since we aim to generate regions at a future time, we mask each

test trajectory to obtain a partial trajectory. The masked part is

considered the ground truth (ground truth trajectory 𝜏𝑎𝑔𝑡 in our

notation) while the unmasked part is used to set the initial condition

(logic programΠ𝑖𝑛𝑖𝑡 ). Wemask half the trajectory from its midpoint

in all our experiments unless specified.

Methods. We examine three methods, described as follows.

Random baseline (RND). The random method randomly generates

regions from the AOI grid. The AOI grid is formed with cells of

the fixed region size. The average performance of three random

generators is reported.

Deep learning baseline (DL). For the DL baseline, we use a sequence-

to-sequence model [10] to predict future trajectories. To perform

a comparable evaluation, the predicted sequence is mapped to re-

gions in the AOI grid. Here 𝑘 is a hyperparameter considered as

the first 𝑘 boxes encountered by the predicted sequence. We also

evaluated a deep learning baseline trained on all the data (DL-ALL),

which generally was not performant beyond 𝑘 = 4 limiting its F1 -

we include results from that model only in experiments where it

significantly outperforms DL models on subsets. We experimented

with variants of [10] with alternative architectures to mimic similar

to point-based prediction models [16, 46] but these achieved worse

results than DL and DL-ALL.

Abduction (ABD). The abduction method uses train data to obtain a

set of regions (which is the subset of the AOI grid), from which it

learns SH rules to obtain Π. Given a test trajectory, it then generates

top 𝑘 regions using
ˆ𝑓𝐸 via abductive inference.

Metrics. We report precision as the fraction of returned regions

that contain points in the ground truth trajectory. Likewise, recall

is the ratio of returned regions containing ground truth points to

all regions containing irredundant points from the ground truth

trajectory. The F1 is the harmonic mean of these quantities.

4.1 Experiments
We examine the ABD, RND, and DL approaches when applied to

AIS data. We first inspect the area efficiency, which has practical

significance. We then evaluate the methods for long-term reasoning

capabilities. Further, we compare all approaches as a function of 𝑘

in a standard setting. We also provide hyperparameter sensitivity

concerning region size as well as ablation studies forΠ (based on dif-

ferent rule types, e.g. SH, MH rules), and the versatility to masking

methods of the test trajectory. Finally, we assess ABDwhile limiting

the training data. We conclude by showing the interpretability of

results in ABD.

Area Efficiency. In our application, we wish to identify the greatest
number of locations for dark vessels while searching the smallest

area possible - as identification of dark vessels would require re-

sources such as aerial or satellite imaging. We examine recall as a

function of area in Figure 1a. We found that recall for ABD satu-

rates at 30km
2
- achieving a recall of 0.99, which is 157% higher

recall than DL for that area. DL meanwhile saturates at 81.75km2

- achieving recall of only 0.57. This difference suggests that ABD

provides more efficiency per unit area. To further investigate this

efficiency, we examine how it trends as a function of 𝑘 (number of

regions) in Figure 1b. It turns out that the recall per square kilometer

monotonically increases with 𝑘 for ABD while it decreases for the

baselines. This implies that ABD can continue to produce quality

regions. This is significant for practitioners because, when addi-

tional search resources are available, ABD can continue to improve

search efficiency with the addition of more search resources.

Long-term Reasoning. The prior experiments examined perfor-

mance under the assumption of a fixed time horizon. Next, we

examine performance across multiple time horizons and show the

results in Figure 2. Here we examine each approach with different

settings for 𝑘 but find that ABD again consistently outperforms

other methods in terms of F1. We also note that ABD is the only

approach where an increase in 𝑘 improves results (e.g., DL achieves

poorer performance with 𝑘 = 10 vs. 𝑘 = 5). This suggests that

our previously described efficiency results likely hold to the case

of multiple time units while DL convergers by leveling off after



(a) Recall vs. Area

(b) Recall per km2 vs. k

Figure 1: Area Efficiency: (a) Relationship between Recall
and Area, (b) Recall per km2 as a function of 𝑘

Figure 2: Long-term reasoning. F1@{k=5,k=10} for Abduc-
tion, DL, and Random baselines.

the first time horizon. This illustrates that with increasing time

horizons, DL is not able to predict long-term trajectories.

Vessel Recall and Accuracy.We examine ABD, DL (when trained

on the subset datasets individually, as well as on the entire train

set), and RND allowing for different values of 𝑘 (number of regions).

Note that the default DL is DL-Subset. Figure 3a shows that across

all settings of 𝑘 , ABD outperforms all other methods in terms of

(a) F1@k metric

(b) Precision-Recall curve

Figure 3: Comparison of (a) F1@k metric and (b) Precision-
Recall curve

F1 - and ABD on average provides a 51% increase over DL. We

note for higher values of 𝑘 , DL starts to converge with the random

baseline (i.e., around 𝑘 = 28) while ABD maintains approximately

double the F1 score. When we examine the precision-recall curve

in Figure 3b, we gain an intuition as to why the F1 flags for the

DL approach - and the answer is that the recall of DL saturates at

0.57 - indicating limited value in adding more regions (increasing

𝑘) where ABD can obtain a recall approaching 1 while increasing 𝑘 ,

with graceful degradation of precision. ABD has a 476% increase in

the recall by adding more regions up to 𝑘 = 30. In this experiment,

we also recorded the results of DL-ALL (a single model trained with

the whole dataset instead of the sub-datasets). For 𝑘 = 3, 4, DL-

ALL gave the highest F1 due to larger precision values (as seen in

Figure 4b) but the performance degrades by 56% for a unit increase

in 𝑘 , and as 𝑘 increases to 30, it degrades further. Additionally, as

seen in Figure 3b, similar to DL, DL-ALL also saturates and does

not achieve a recall beyond 0.3, explaining the decrease in F1. Also,

DL-ALL performed 50% lower on F1 when compared to standard

DL. DL-ALL gives the highest F1 for time horizons very near to the

current time. While this is less relevant for our current application,

it may provide insight for further inquiry (e.g., a neurosymbolic

approach leveraging both abduction and a model trained on a large

number of trajectories).



(a) Recall@k metric

(b) Precision@k metric

Figure 4: Comparison of ML metrics- (a) Recall@k and (b)
Precision@k.

Region Size Sensitivity. In the aforementioned experiments, we

determined the region size by considering the computational effi-

ciency of rule learning and generating regions with fair coverage-

so that a single region does not end up covering the entirety of the

vessel-search space. We now call that setting LG, while the setting

SM is when we reduce the region size by 80%.

Note that reducing the region size (SM) is effective by itself as

seen by RND-SM achieving comparable performance to DL-LG

up to a certain extent. However, ABD outperforms all baselines

particularly when the region size is reduced. The curve is steeper

for ABD when the region size is decreased by 80% from LG to SM

depicted in Figure 5, while that of DL resembles its performance

in the earlier experiment. We found that not only that our results

maintain with reduced region size, but they also led to improved

performance in ABD (reducing the total search area by about 60%)

while the reduction in region size did not meaningfully change the

performance of DL.

Ablation by Rule Type and Masking Sensitivity. As described
in Section 3.3 we developed several methods to learn rules (see

Table 1). In Figure 6, our abduction (ABD) approach still works

well for different kinds of rules like single-hop and multi-hop rules.

Note that single hop has a slightly wider range of F1 scores with

respect to the lower extremes by 0.05 while the upper extremes

and medians are similar. Additionally, we also wanted to examine

the impact of the type of masking on the results - from a practical

standpoint to model applications for detecting deceiving vessels

who tamper with their AIS transmitter. Here, the masking would

typically start from a point where the AIS is tampered with. The

Figure 5: Region size sensitivity for different region-sizes (of
LG denotes the larger region size = 5.45𝑘𝑚2 and SM denotes
the smaller region size= 1.1 𝑘𝑚2)

Figure 6: F1 scores for various masking methods and rules,
including AIS Off (SH), Stay (SH), 50 End (SH), and 50 End
(MH), where SH represents single hop rules and MH repre-
sents multi-hop rules.

abduction model works under various masking settings like when

the making starts where the vessel does not transmit any AIS signal

for more than normal time or stays in the same region for too long

based on historical data. This shows that the model can be applied

to both the detection of dark vessels and detecting vessels when

they tamper with their AIS to violate sanctions.

Data Efficiency. The abduction (ABD) model also works well with

limited training trajectories as seen in Figure 7 while DL-based

methods aremore data-driven as seen in Figure 8. Note that for ABD,

the use of a single training trajectory versus all of the historical data

gave the same precision of 0.62 and a 0.13 difference in F1. On the

other hand, as expected, DL has a huge variation with increasing

training trajectories by boosting its performance by 254% as seen

in Figure 8. This gives scope for the application of this model with

expensive or limited available data.

Runtime. In Figure 9 we examine the runtime of ABD as a function

of the number of regions 𝑘 . As expected, the runtime increases

linearly with 𝑘 as this simply involves additional deductive steps.

Further, we note that the deduction itself is efficient (linear in the

size of nodes) as previously reported [2, 34].



Figure 7: Evaluation of ABD with limited training data (tra-
jectories). ABD performed smoothly, with variations in the
number of training trajectories.

Figure 8: Evaluation of ABD and DL with limited training
data (trajectories). Note that DL achieved an F1 near zero
with five training trajectories.

Figure 9: Evaluation of runtime in terms of milliseconds of
ABD as a function of 𝑘

Explainability. All regions are symbolic in nature, every inference

can be backtracked to the sequence of historically learned rules,

in addition to its confidence as seen in Figure 10. This gives scope

for domain experts in analyzing false predictions, assess vessel

behavior, and even incorporating domain knowledge into the rules.

Figure 10: Abduction model predictions. The dashed trajec-
tory is the ground truth. Black regions are the generated
regions with corresponding confidence and region types

Figure 11: Deployment of abductionmodel in an online learn-
ing setting with kafka

5 DEPLOYMENT
We have designed a prototype system based on the abduction model

with a live feed of trajectories, where it continuously updates its

logic program as it generates regions in an online learning set-

ting. This architecture is depicted in Figure 11. We have selected

a microservices-based architecture for near real-time detection of

maritime dark vessels that receives input training data delivered

by data providers to an Amazon S3 bucket. The arrival of new

data triggers a batch process that performs data indexing and gen-

erates symbolic regions. This processed data is then fed into a

rule-learning microservice, which is subsequently transformed into

a logic program by learning rules that are staged into the S3 bucket.

In the production environment, live data is streamed via a near

real-time Kafka feed. We use Apache Kafka to consume the AIS data

stream in near real-time as a streaming architecture. An attribution

processor subscribes to this feed and enriches the incoming data by

tagging it with the necessary symbolic region and indexing meta-

data. The enriched data is then integrated into the logic program

(which includes both updated rules and TAFs), before being fed into

the reasoner (Γ∗), which infers 𝑘 regions at a given time horizon.

We then use Quantum Geographic Information System software to

visualize the regions in the area of interest for an end-user.



6 CONCLUSION
We identify the locations of dark maritime vessels using a com-

bination of abductive inference and rule learning and provides

explainable long-time horizon prediction - an area where machine

learning approaches fail. These aspects were validated by our exper-

imental results and we provide our deployment architecture with

a live feed of data. This work can be extended by leveraging envi-

ronmental knowledge in the logic program, which has a significant

role in the maritime domain where we look to utilize techniques

from neurosymbolic AI [35] that will enable the use of larger scale

models for enhanced near-term precision while retaining the long-

term reasoning ability of the abduction methods introduced in this

paper.
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