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Abstract—Qperating in the modern battlefield requires a level of adaptability that
conventional artificial intelligence (Al) currently lacks; it remains a technology that
requires large amounts of data, storage, and training while lacking the ability to
recognize potential errors in decision-making and adapt accordingly. Metacognition
is the human brain’s awareness of its own cognitive processes and its framework
for analyzing and adapting those processes to meet the cognitive needs required
of a task. Metacognitive Al, which is Al technology capable of introspection,
self-monitoring and self-adaptation, has the potential to revolutionize the

field of Al by reducing the need for continual human oversight and retraining with
each modification of its tasks or environments. In this paper, we proffer the use
of hyperdimensional computing (HDC), which is a robust method of representing
large-scale data under a single class while allowing for efficient comparisons

less susceptible to noise, techniques to achieve metacognitive Al by creating
robust, energy-efficient systems capable of self-requlation, self-analysis, and self-
adaptation. Recent research in HDC and metacognitive Al is discussed, highlighting
the potential efficacy of utilizing HDC’s capabilities to realize metacognitive
Al-enabled systems. The intent of this position paper is to outline the potential of
combining these two approaches to increase the transparency and assurance of Al.

rtificial intelligence (Al) has revolutionized the

way people perform work, becoming an invalu-

able tool with great potential in fields ranging
from education to the defense industry.' However,
effective Al usage in safety-critical settings is contin-
gent on increasing transparency and assurance of Al.2
Deep neural networks are the most commonly utilized
deep learning based Al methods, but have key limi-
tations in generalization, transparency, and resource
efficiency. A survey of deep learning highlighted how
neural networks are data hungry, lack transparency,
and have limited capacity for transfer.®> These weak-
nesses call for the implementation of new architectures
for developing and deploying Al-enabled systems.

For military applications, Al failures have serious
consequences; thus, accountability and transparency
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are paramount. The U.S. military has established re-
sponsibility, equity, traceability, reliability, and quality of
being governable as the five principles of Al usage.?
Bridging the ethical gap on the battlefield requires
increased transparency. In addition, self-adaptability,
self-regulation, and low-resource consumption are re-
quired to increase the usability of Al on the battlefield.

Metacognition, defined as the perception and reg-
ulation of cognitive processes, is integral in influencing
human cognition and behavior.* In humans, cognitive
maps are the mental representations of structures
and relationships used to navigate problem solving in
both spatial and nonspatial contexts.® In Al, cognitive
maps are the representations of task structures and
adaptive planning. Research in deep neural network-
trained large language models revealed how traditional
methods of Al lack the capacity to construct cognitive
maps, rendering them unable to generalize and adapt
decision making.® We propose that metacognitive Al
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FIGURE 1. Conceptual overview of HDC and its three main operations: encoding, binding, superimposing

capable of representing cognitive maps will permit Al-
enabled systems to store and recall previous learning,
enabling transfer learning in new contexts and increas-
ing transparency and trust in decision-making.

Key to the utilization of cognitive maps in metacog-
nitive Al is the resource-efficient representation of
models capable of training on limited examples. Hy-
perdimensional computing (HDC), in comparison to
traditional architectures like deep neural networks, of-
fers a less resource-intensive method of computing.”
Furthermore, HDC'’s ability to outpace deep neural net-
works when data is limited makes it ideal for computing
on the edge with resource and data constraints.®

For the remainder of this paper, we identify the
unique strengths of HDC and how it can be combined
with principles of metacognition to create a unified
representation layer capable of storing and compar-
ing cognitive maps to support a larger metacognitive
Al architecture that brings self-regulation and self-
adaptation to Al-enabled systems.

HDC is a method of computing that deviates from
traditional von Neumann computing by utilizing vectors
existing in hyperdimensional space to perform opera-
tions. Inspired by the human brain, HDC is designed
to be noise-tolerant and capable of storing, retrieving,
and calculating similarity in a less resource-intensive
way than traditional computing.®

It is possible to achieve such resource-efficient
computing because the ability to classify using near
similarity removes the requirement for determinis-
tic computing, increasing robustness towards noise.
These properties make HDC ideal for situations that
require lightweight, transparent and data-efficient com-
putation and multimodal comparison.®

Hyperdimensional vectors can encode a multitude
of data structures, including sets, binary trees, and
graphs, and are capable of storing and computing
probabilities without explicit counting, which reduces
the memory and computing requirement for HDC.® In
Figure 1, we use the example of classifying a fruit as
an orange to demonstrate HDC’s use of multiplication-
bound key-value vectors and how profile vectors are
formed and compared using superimposing, permuta-
tion and cosine similarity.®

Al Model Training on the Edge

Recent research has identified potential for using
HDC in edge training.® To measure HDC performance,
researchers compared its performance with traditional
convolutional neural networks (CNN). Compared to
CNNs, HDC achieved about 20% higher inference
accuracy when training with only a single sample per
class.® Further, HDC only requires that the encoding
be performed once (compared to the many epochs
required by CNNs). Performing model adjustments
after encoding incur lower costs, further supporting the
potential of using HDC in training on the edge.®
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FIGURE 2. Conceptual overview of Metacognitive Al architecture

Al currently lacks metacognition, which is ‘cogni-
tion about cognition’ that provides self-monitoring pro-
cesses to the brain and that can be used as inspiration
for developing metacognitive Al.'® Tankelevitch et al.
suggests that as cognition responsibility is increasingly
offloaded to Al, it is increasingly necessary for Al-
enabled systems to have the ability to monitor and
recognize when its own cognitive processes are inad-
equate and require resource-efficient adaptation.!’

Tankelevitch et al. identified four Al failures that
can be addressed by metacognitive Al: transparency,
reasoning, adaptation, and perception. Metacognitive
Al permits Al models to explain outputs and decisions,
self-reflect on logic, adapt behavior and strategy, and
perceive sensory information in the environment.'
Thus, use of metacognitive Al-enabled systems in-
creases transparency and enables the operation of
fast-paced environments, transferring and adapting
knowledge from different contexts in an efficient way.

Metacognitive Al Architecture

We propose a metacognitive Al architecture, de-
picted in Figure 2, that regulates and adapts cognitive
processes, comprising a foundational meta-framework
layer, cognitive regulation layer, unified representation
layer, and a meta-hierarchical representation layer. We
illustrate this architecture using a “hello world" example
of a trained Al model for handwritten digit classification
adapting to examples outside its training data.

May 2025

Representation Layer:
supervises self-regulation loop

Unified Representation Layer:
represents and compares
cognitive maps

.

Cognitive Regulation Layer:
R compares predictions to
environment and updates
model

Foundational Meta-Framework:
converts processes into
manipulable objects

The foundational meta-framework, rooted in cate-
gory theory, provides a structured approach to cogni-
tive representation by formalizing relational knowledge
and hierarchical abstractions.'? In this layer, the sys-
tem abstracts processes and concepts as manipulable
objects. In our example, the model would identify and
represent each potential process. For example, one
method of classifying digits from untrained domains
might be to create a new, “unknown" category, while
another might be to categorize examples of untrained
digits into the most similar digit the model knows.

The cognitive regulation layer introduces predic-
tive coding mechanisms, enabling Al to self-monitor
decision-making by minimizing prediction error.' A key
component is the Cognitive Map Learner (CML), which
encodes an environment and associated actions into
a unified representation space. The CML constructs
cognitive maps by learning state-action relationships
and refining its internal model over time.

The CML is supported by HDC, which provides a
dual representation framework for both superposition-
based state encoding and geometric transformations
in planning. HDC allows the CML to encode high-
dimensional state-action representations using binding
and superposition operations, facilitating efficient stor-
age, retrieval, and adaptation. The ability to maintain
quasi-orthogonal hypervectors ensures robust pattern
recognition and generalization, particularly in environ-
ments with partial observability, where one-to-one state
mappings are not always available. HDC’s associative
memory further enables inference of missing state in-
formation, reducing dependence on explicit retraining.



In our example of handwritten digit classification,
the cognitive regulation layer would identify and adjust
the threshold between identifying examples as either
belonging to one of the digits within the trained domain
or an unknown digit to minimize prediction errors.

The unified representation layer leverages HDC to
store and compare cognitive maps as they evolve. Un-
like traditional deep learning models that rely on weight
updates, HDC dynamically adjusts high-dimensional
representations through fast similarity-based opera-
tions, allowing real-time adaptation. This self-updating
capability ensures that representations remain flexible
without requiring extensive retraining. In our example,
the unified representation layer would leverage HDC
to represent each of the models utilizing the different
problem-solving approaches, enabling effective and
efficient comparison of their performances.

Finally, the meta-hierarchical representation layer
integrates self-regulation mechanisms across all lay-
ers, enabling Al to learn from past experiences while
adapting to new challenges. In our example, the meta-
hierarchical representation layer would identify priori-
ties based on the task at hand and adjust the model ac-
cordingly. If the task requires maximizing the accuracy
of predictions for each category, it would select models
that do not categorize examples identified as being
outside the training scope. Yet, if the task requires that
all examples be categorized into labels included in the
training data, then accuracy may be de-prioritized in
favor of labeling each example. This oversight ensures
decision-making consistency while maintaining flexibil-
ity. By embedding HDC-driven cognitive map learning
within this framework, we establish a robust Al-enabled
system capable of continuous learning, transparent
decision-making, and real-time adaptation.

Metacognitive Al Deployment Considerations

The real-world deployment of metacognitive Al
with HDC necessitates further exploration of hard-
ware constraints and system integration. Implementing
metacognitive Al at-scale requires advancements in
low-power neuromorphic computing, real-time adap-
tation mechanisms, and more efficient HDC encod-
ing strategies. Future research should investigate how
multi-agent metacognitive architectures can be applied
to distributed Al decision-making, particularly in envi-
ronments where multiple autonomous systems must
dynamically coordinate under uncertain conditions.

Beyond resource-efficiency, the integration of
metacognitive Al with HDC has significant implications
for Al explainability and trustworthiness. Traditional

deep learning models often operate as black-box sys-
tems, limiting their interpretability. However, by struc-
turing Al cognition through HDC-encoded cognitive
maps, metacognitive Al can provide more interpretable
decision pathways. This structured encoding fosters
greater human-Al collaboration, allowing operators to
query, audit, and understand Al decisions in real time.
Future research should explore how HDC-encoded
knowledge representations can be used to gener-
ate human-readable Al explanations, further improving
trust and transparency in Al-assisted decision-making.

HDC for Self-Regulation and Adaptation

A crucial aspect of implementing metacognitive Al
at-scale is ensuring that the underlying architecture
remains computationally efficient while dynamically
adapting to new scenarios. Traditional deep learning
models require extensive retraining when encountering
novel conditions, making them impractical for real-
time applications in dynamic environments such as
cyber defense, aided target recognition, multi-domain
operations, and autonomous decision-making. In con-
trast, HDC enables a lightweight and energy-efficient
mechanism for encoding, storing, and comparing cog-
nitive maps, allowing Al-enabled systems to refine their
strategies without full-scale retraining. This capability
is particularly advantageous for edge computing appli-
cations, where real-time self-regulation and low-power
adaptability are critical.

Moreover, metacognitive Al can be further en-
hanced by incorporating predictive coding mecha-
nisms that proactively minimize uncertainty in decision-
making processes. Inspired by neuroscience, predic-
tive coding allows Al-enabled systems to continuously
compare their expected outcomes against environ-
mental feedback, iteratively reducing errors. When
integrated with HDC’s ability to efficiently store and
manipulate structured cognitive maps, this approach
permits Al to conduct real-time self-assessment and
autonomous course correction. The result is an Al-
enabled system that not only generalizes across di-
verse tasks but also dynamically fine-tunes its cognitive
models, reinforcing robustness, trust, and interpretabil-
ity in Al-driven decision-making.

By leveraging HDC as the foundation for a meta-
hierarchical architecture, we propose a scalable frame-
work that operates efficiently without the computational
overhead of traditional neural networks. The ability to
encode relationships, actions, and contextual informa-
tion in a unified high-dimensional space facilitates on-
the-fly adaptation, which is essential for military, cyber-
security, and autonomous system applications. Future
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work should investigate optimizations in hardware ac-
celerators for HDC, ensuring that metacognitive Al can
function effectively under real-world constraints while
maintaining robustness and explainability.

The Unified Representation Layer

The unified representation layer leverages HDC for
efficient cognitive map representation and comparison.
Unlike traditional Al models requiring extensive re-
training, HDC encodes structured knowledge in high-
dimensional spaces, enabling real-time adaptation.
Key mathematical frameworks include Fourier Holo-
graphic Reduced Representation (FHRR) and Gener-
alized Holographic Reduced Representation (GHRR).

FHRR employs complex-valued hypervectors and
Fourier transformations for efficient binding and noise
resilience, enhancing dynamic learning,'® whereas
GHRR extends holographic computing with non-binary
encoding, improving adaptability and compositional
memory.'” GrapHD further expands HDC'’s capabilities
by encoding graph-based structures, optimizing rela-
tional knowledge representation.'® By integrating these
methods, the unified representation layer supports
adaptive learning, robust memory encoding, and effi-
cient cognitive map comparisons.'® These approaches
enhance Al self-regulation and edge computing appli-
cations, ensuring scalable and data-efficient Al.

Al must be trustworthy and assured to be useful
on the modern battlefield and in industry at-large.
Today, the resource-intensive nature of current deep
neural network based Al-enabled systems and their
brittleness in the face of ever-changing conditions limits
the implementation of Al on the battlefield - particularly
in scenarios of multi-domain operations (where navi-
gating changing contexts is key) and autonomy (which
must function without constant human supervision).

As such, we proffer the use of HDC to create a
unified representation layer to enable self-regulation
and self-adaptation necessary for metacognitive Al.
HDC provides a resource-efficient method of represen-
tation uniquely suited for systems on the edge requir-
ing data-efficient storage and comparison of cognitive
maps. Furthermore, it enables the demystification of
Al decision-making and increases the operator’s trust
in the Al-enabled system’s ability to self-regulate and
self-adaptation in new operating domains.

Future work must further explore frameworks
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for representing cognitive processes as hyperdimen-
sional vectors and how to increase data-efficiency
by adjusting the hardware used in edge devices.
Through further investigation of increasing the data-
efficiency of HDC and methods of effectively leverag-
ing HDC for metacognitive Al, the development of a
meta-architecture capable of self-regulation and self-
adaptation will provide increased transparency, trust,
and accountability in deployed Al-enabled systems.

The views expressed in this paper are those of the
authors and do not reflect the official policy or position
of the United States Military Academy, Department of
the Army, Department of Defense, or U.S. Government.
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