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Abstract—The adoption of Vision Foundation Models (VFM) in high-stakes
scenarios has spurred the the demand for task-specific high-performance
models. On the other hand, the lack of explainability of VFMs makes
it challenging to ensure that these systems remain safe, reliable and resilient
when encountering data that has a different distribution from the one encountered
during training. Recently, approaches based on metacognition – the human
ability to regulate cognitive processes – has emerged as a way to understand
large models. This paper surveys the interdisciplinary connection between
metacognition and state-of-the-art VFMs, and further examines its relationship
with knowledge distillation (KD), a widely used technique in VFMs. The
paper concludes by defining possible avenues for future research on the topic.

Introduction

M etacognition, or “cognition about cognition,”
was introduced by Flavell in 1979 and later
expanded by Brown in 1987.1, 2 In psychol-

ogy, it refers to an individual’s ability to monitor, reg-
ulate, and adapt their cognitive processes. Although
metacognition has been extensively studied in diverse
fields, including schizophrenia research, programming
education, manufacturing, aerospace, and military ap-
plications, its definitions and applications vary.16–20

Here, we adopt Flavell’s framework, which categorizes
metacognition into knowledge, experiences, goals, and
strategies, allowingg self-reflection, adaptive learning,
and improved decision-making.

A similar paradigm applies to VFMs, which are
large-scale models trained on vast multi-modal data
to learn general-purpose visual representations. Just
as metacognition improves human cognition, it allows
artificial intelligence (AI) systems to self-monitor, detect
errors, adapt learning strategies, and optimize per-
formance. Although interest in metacognitive AI has
fluctuated, the rise of Artificial General Intelligence
(AGI) has rekindled its significance.3–6 This is partic-
ularly prevalent in agentic systems and generativeAI,
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where adaptability and self-improvement are crucial.7, 8

While systems like ChatGPT and Deepseek AI already
employ metacognitive strategies to refine reasoning
and outputs, their application to VFMs remains largely
unexplored.9, 10 Furthermore, KD has been explored as
a means to improve self-supervised learning and adap-
tation in VFM by transferring structured knowledge
from a teacher model to a student model. This work
examines metacognitive AI in VFMs, particularly its
role in improving explainability, uncertainty estimation,
adaptive learning, and error detection. Our key contri-
butions are: (i) unifying metacognitive approaches in
AI to enhance self-awareness and interpretability in
VFMs; (ii) bridging metacognition and KD, highlighting
their intersection in self-regulating learning strategies
and (iii) identifying research challenges and future
directions to develop more robust VFMs.

Metacognitive Framework for Vision
Foundation Models

To observeVFMs through the lens of metacognition,
Figure 1 presents our framework - integrating metacog-
nition into VFMs to highlight its importance in enhanc-
ing model performance, adaptability, and trustworthi-
ness across diverse applications. In this framework, we
adapt the original four components of metacognition
as described by Flavell and map aspects of VFMs
to these components. Our mapping emphasizes the

May Published by the IEEE Computer Society 1



role of these metacognitive components in improving
inference reliability and decision-making with VFMs.

Metacognitive Knowledge refers to an awareness
of one’s cognitive processes. In VFMs, this translates
to understanding their own learning capabilities and
limitations. Given their large parameter spaces and
black-box nature, acquiring this knowledge requires ex-
plainable models. Approaches such as modeling patch
embedding distributions in VFMs or linearly combining
concept prototypes enhance interpretability.22, 23 Post-
hoc methods, including saliency maps and attention
visualization, further aid in explaining inference mech-
anisms.27 Additionally, VFMs trained to detect object
recognition errors without label access exemplify self-
assessment capabilities.28 Together, these techniques
support explainability and error estimation—key ele-
ments for effective VFM adaptation in complex com-
puter vision tasks.
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FIGURE 1. Metacognition in Vision Foundation Models.

Metacognitive Monitoring enables to assess input
reliability and detect domain shifts. This connects to
VFMs in two ways. First, VFMs, due to their rich feature
representations, can help verify whether an input aligns
with the training distribution of an AI system, thus work-
ing as monitors themselves.21 Second, VFMs them-
selves require monitoring post-deployment, especially
after fine-tuning for specific tasks. This monitoring can
be used for both checking inputs for distribution shifts
(out-of-distribution (OOD) detection) and misclassifica-
tion detection (uncertainty estimation).

As VFMs undergo fine-tuning before being de-
ployed to specific tasks, it reduces OOD detection
performance of VFMs by overfitting to learned fea-
tures.24 Strategies such as parameter-efficient tuning
help maintain broad feature representations crucial
for OOD robustness. For example, fine-tuning vision
language models like CLIP with multimodal concept
matching preserves semantic richness, thus improving
OOD detection.25 Benchmark studies also show that
while fine-tuning improves classification accuracy, it
may affect the ability to recognize novel inputs unless
explicitly addressed.26 These findings underscore the

importance of balancing task adaptation with gener-
alizable feature retention to maintain reliable OOD
detection.

Metacognitive monitoring in humans is well aligned
with metacognitive monitoring for VFMs, as shown
in Figure 2. For humans, metacognitive monitoring
involves estimating one’s confidence in their knowl-
edge, recognizing when the provided information is
incorrect, and identifying situations where they lack
knowledge about a specific topic—commonly referred
to as a knowledge gap. Similarly, for VFMs, uncertainty
estimation ensures reliable inference, misclassification
detection identifies errors, and OOD detection helps
determine when the VFM lacks sufficient knowledge
about a given input. The same applies to large lan-
guage models (LLMs): self-consistency checks pro-
mote confident inferences, hallucination detection pre-
vents the generation of incorrect outputs, and OOD de-
tection facilitates the identification of knowledge gaps.
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FIGURE 2. Mapping among metacognitive monitoring in hu-
mans, VFMs, and LLMs.

Metacognitive Control refers to an individual’s ability
to obtain a concise summary of its cognitive state as
well as its ability to monitor such knowledge seam-
lessly. Ultimately, it helps to adapt to the optimum
learning strategy dynamically by controlling the cog-
nitive process, which we term metacognitive control.
The control over this learning process becomes in-
creasingly more necessary as such VFMs are used
in specific downstream tasks through fine-tuning. A
notable example of metacognitive control in VFMs is
the self-distillation mechanism used in DINO.36 In this
framework, a VFM learns from soft targets gener-
ated by an exponential moving average of its own
parameters, which serve as a teacher model, offering
more informative feedback than hard labels. Although,
it shows how metacognitive control is benificial to
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learning process of VFMs, the actual process is not
guided by clear and concise knowledge of the learned
representation itself which can be a possible venue of
improvement for the next generation of VFMs.

Metacognitive Experience encompasses the feelings
and judgments that arise during cognitive tasks, such
as confidence in an answer or awareness of difficulty.
In VFMs, this translates to assessing prediction cer-
tainty, recognizing uncertainty, and adapting accord-
ingly. Confidence calibration and self-reflection are key
mechanisms for enabling this capability. Recent studies
have shown that fine-tuning large transformer-based
foundation models impacts confidence calibration. For
example, a Bayesian parameter-efficient fine-tuning
framework addresses under-confidence issues, im-
proving reliability in few-shot settings.29 Similarly, cal-
ibrated robust fine-tuning (CaRot) enhances both out-
of-distribution accuracy and confidence calibration in
vision-language models.30 Beyond confidence calibra-
tion, self-reflection allows models to iteratively refine
their outputs, thus improving decision reliability. While
LLMs have leveraged self-reflection for enhanced ro-
bustness, similar techniques remain unexplored for
VFMs.31 Existing work on model introspection focus on
analyzing internal states and decision processes.32–35

However, none specifically target VFMs. Developing
self-reflective VFMs could bridge this gap, enabling
models to assess their own reliability and adapt dy-
namically – thus advancing adaptability in real-world
applications.

Knowledge Distillation in
Metacognitive VFMs

We believe KD will play a critical role in enhanc-
ing the efficiency, adaptability, and generalization of
VFMs by enabling a student model to learn from a
teacher model through soft labels rather than hard
classifications.11 This process allows VFMs to acquire
structured knowledge representations, thus leading to
more efficient self-supervised learning and better fea-
ture abstraction.12 From a metacognitive perspective,
KD enhances self-monitoring and adaptation in VFMs.
Self-distillation techniques, such as DINO, enable mod-
els to refine their own knowledge representations by
treating their earlier predictions as a form of internal
guidance.36 This self-assessment mechanism mimics
metacognitive reflection, allowing VFMs to evaluate
and refine learned representations over successive
training cycles. Progressive distillation, where a stu-
dent model undergoes multiple iterations of knowledge
refinement, further reinforces self-improving learning
paradigms.14 However, challenges remain in integrat-

ing explicit self-awareness mechanisms into KD for
VFMs. Current KD approaches often inherit biases
from the teacher model, lack mechanisms for inter-
pretable feature selection, and struggle with adapting
to novel, OOD scenarios.13 Future research should
explore self-reflective distillation where VFMs actively
assess their learning trajectory and uncertainty levels
to optimize knowledge transfer dynamically. Addition-
ally, uncertainty-aware distillation techniques could al-
low VFMs to focus on hard-to-learn instances, further
aligning with metacognitive self-regulation principles.15

By embedding metacognitive control and monitoring
into KD, VFMs can evolve into more self-aware, effi-
cient, and generalizable AI systems that are capable
of adaptive learning, robust decision-making, and im-
proved inference reliability.

Future Research Directions
While metacognition has gained traction in language
models through chain-of-thought reasoning, its inte-
gration into VFMs remains substantially unexplored.
Although VFMs enhance general AI performance, their
ability to assess prediction reliability (e.g., confidence
calibration) and refine outputs (e.g., self-reflection) is
still in its infancy. In short, we highlight the following
key research opportunities:

Confidence Calibration: Fine-tuning often degrades
VFMs’ confidence calibration. Future research could
explore meta-learning strategies to preserve calibra-
tion post-fine-tuning or self-assessment modules that
analyze internal features to detect anomalies.

Metacognitive Feedback Loops: Similar to human
learning, VFMs could benefit from a human-in-the-loop
framework, incorporating real-time feedback for more
reliable adaptation. Unlike standard lifelong learning,
this approach actively integrates external validation
into the learning process.

Limited Self-Reflection: While self-reflection has im-
proved reasoning in LLMs, its application to VFMs re-
mains unclear.31 Self-consistency and rationale reflec-
tion could refine vision-based predictions, especially in
high-stakes tasks like medical imaging or autonomous
navigation. A lack of these mechanisms leads to per-
sistent errors in complex scenarios.

Task-Specific Adaptation: VFMs are computationally
expensive. Metacognitive control could enable adap-
tive feature extraction, optimizing energy efficiency by
adjusting computational resources based on task com-
plexity. A key research question is whether VFMs can
dynamically select relevant components to improve ef-
ficiency through post-hoc dynamic neural architectures
capable of metacognitive adaptation.
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Conclusion
This paper has discussed the integration of metacog-
nitive principles into VFMs to enhance their perfor-
mance, adaptability, and reliability. With the align-
ment of metacognitive factors – experience, monitor-
ing, knowledge, and self-reflection – with core con-
cepts of VFMs, we have highlighted tremendous poten-
tial in model reliability augmentation, decision-making,
and overall generalization. While metacognitive ap-
proaches have been well researched in language
models, their generalization to computer vision is still
underdeveloped. Future research in areas such as
confidence calibration, self-monitoring, and adaptive
learning algorithms can pave the way for more powerful
and efficient VFMs to solve real-world problems across
different applications.
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