Theme: 2nd Workshop on Metacognitive Prediction of Al Behavior

Hyperdimensional Computing for

Metacognition

Peter Sutor, University of Maryland, College Park, MD, 20770, USA
Cornelia Fermidiller, University of Maryland, College Park, MD, 20770, USA
Yiannis Aloimonos, University of Maryland, College Park, MD, 20770, USA

Abstract—Hyperdimensional Computing (HDC) is a computing paradigm that
operates in closed algebras of high dimensional vectors, called hypervectors. HDC’s
usage affords many interesting properties in both symbolic level Al and Machine
Learning. Namely, the ability to rapidly learn policies that approximate models in
its high dimensional space. In this paper, we discuss how HDC can be used as a
metacognitive framework in which such meta-models can be learned and merged
together. Moreover, we present methodologies derived from prior work in HDC that
further allow desired properties of metacognition to manifest; such as explainability
of black-box models, self adaption and online learning, and perceptual grounding.

etacognition in Al is the idea of reasoning

about the Al system itself. Hyperdimensional

Computing (HDC) is a computing paradigm
in which an Al can be observed and modeled through
algebraic statements. Clearly, it is quite natural to
employ HDC to facilitate metacognition. In this pa-
per, we discuss prior results in HDC recontextualized
for metacognition, in order to demonstrate how HDC
can be used to facilitate metacognition for any Al
system, be they symbolic, neurosymbolic, or machine
learning derived. First, we describe HDC and some
key operations and properties. Then, we focus on
several works, referred to as “Case Studies" that show-
case metacognition via HDC. Finally, we discuss other
methodologies in HDC that can further facilitate the
gain of various metacognitive capabilities.

At its core, Hyperdimensional Computing is the real-
ization that most computing occurs in minimal repre-
sentations of information necessary for the computa-
tion (integers, floating points, true/false, etc.), which
is incongruous with computation in real life brains;
these are inherently high dimensional in nature, far
beyond these minimal representations. Instead, the

XXXX-XXX © 2025 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

May Published by the IEEE Computer Society

brain must operate on instances of high dimensional
representations. To model these operations, an algebra
of hypervectors must be constructed to approximate
the empirical behavior, as noted by Pentti Kanerva [1].

We will focus on the simplest, but most ubiquitous
form of HDC; random binary strings as hypervectors.
These are immediately mappable to computer opera-
tion and circuits, and serve as digital approximation of
computational behavior in high dimensional strings of
information. Consider the space of vectors V € {0, 1}",
or binary strings of length n. We consider two algebras.
The first employs a binding operator (our abstraction of
a product in this algebra) of bit-wise exclusive-or (XOR)
of 2 vectors, A®B. This binds two pieces of information
together. Namely, as XOR is a difference operator, it
produces a digital involution between A and B. In other
words, an invertible boolean function mapping the two
to each other. Simply XOR with the same vector to
remove it from the mapping. The bundling operator (the
abstraction of superposition in this algebra) is defined
as the Consensus Sum, or “best vote" across the bits
of each component of the hypervector terms being
superposed, producing a logical vector:

m m
Vi+Vot- +Vn= (Z"i >m—ZVi> (1)
i=1 i=1

If component j had more 1’s than 0’s, that component
will have a 1 as a result and 0 otherwise. For an even
number of terms, a random tie-breaker term V.1 can

METACOG-25



Hyperdimensional Inference Layer

© + Cat + Dog + Horse + -

Aggregate
Training
Examples

Given new data, XOR with HIL recalls class

Random

Identity Vector

101011001010
+
011001100011
+
+
001001001001
+
100001111000

for Dog

101010101000 [R8

Characters Morphemes POS

= e
morph [}

unconditional =
uncondition +

++ abab = aba + bab =
M(aba & ba) & bab

N\
o |

aba =ab +ba =

char: "unrelated"
morph: un+relate+ed

conditonal

FIGURE 1. The Hyperdimensional Inference Layer (HIL). The
inferred class has the lowest Hamming Distance from its
hypervector to the XOR of an input hypervector and the HIL.

be added to the sum. If you bundle a set of bindings,
you compute a model that digitally maps inputs vector
to output vectors. If the input vectors are perceptual
in nature, and output vectors are output signals in a
brain, you compute a digital function that associates
(and classifies) perception as actions/activations of the
brain. This gives rise to what will be referred to as
the Hyperdimensional Inference Layer (HIL), as shown
in Figure 1, the common workhorse of HDC. We will
also consider a second algebra, which can be useful
for sequences, where the binding operator is repeated
permutation of bits under a certain permutation pat-
tern. Given permutation pattern P (a vector of new
component indices), you can bind a hypervector A to
symbolic position k in a sequence by:

A[PY] (2)

Note that P¥ simply calls (2) with A < P and k «
k — 1. By computing the inverting mapping P~ such
that P[P~ '] is simply the identity mapping, any binding
under permutation can be shifted at will.

As the length n of the hypervector approaches
hyperdimensional values, typically n = 2'%, or more,
the space of possible vectors rapidly grows. Random
correlations become unlikely. Thus, nearest matches
become significant so long as the dip in Hamming
Distance of the match is statistically significant. These
can range from several standard deviations to dozens
in the Binomial Distribution of n coin flips. Ideally,
hypervectors are random, unless they come from per-
ception, such as in [2]. Perception-based hypervectors
are computed from features, and this encoding process
is an art that is developed for each problem. Encodings
of inputs for each output class should characterize their
differences, while being as similar to in-class training
examples as possible. Due to the recent progression
of Deep Learning, neural networks can be directly
converted to hypervector models [3], [4]. Still, finding
ideal encodings remains an art.

Hyperdimensional Computing for Metacognition

=+ ({
g g g [(ab & b) & ba char: "al* ’\ Rm ::(.C+e Iu:rfla;?d
= g S N——\ R=Cal S un relate+ed})
E] @ g =~ E conditional =
§ 2 § ab=[la @b condition + al > o
S g = N——" anchor C N———— anchor M w
s & E o

INPUT: "ababa" L 2 2

FIGURE 2. Process for how semantics can be learned unsu-
pervised and then be supervised via HDC.

In this section, we cover case studies that show how
HDC performs metacognition to learn metamodels.

Life-Long Learning of Semantics [5]

In this work, Life-Long Learning of HD models is
explored. Semantics can be learned for unsupervised
data by converting it to symbolic hypervectors and
binding positional information to it by sequences. This
employs both algebras that bind with XOR and bind
with sequences as permutations. A spring-mass model
for tension is developed involving hypervectors as loca-
tions of the masses, occurrence counts the mass, and
COo-occurrence counts as springs connecting hypervec-
tors in a knowledge graph. Using physics derived equa-
tions and simulated annealing, random hypervector are
relaxed into low-energy states of low tension, thereby
finding appropriate hypervectors to reflect the knowl-
edge graph. Oracles can be employed on top of this
to add supervision labels and build on this knowledge
graph, an example of which is shown on textual data in
Figure 2. From a metacognitive standpoint, this shows
that HDC doesn’t require an explicit Al to meta-model;
unsupervised data and even raw physics can be used
as a model to employ metacognition on. Furthermore,
you can build on any metacognitive HD model through
arbitrary supervision from oracles (other models) to
build a self-consistent meta-model.

Hyperdimensional Active Perception [2]

In this work, we demonstrate that HDC can perform
Machine Learning directly on perceptual data to solve
tasks. From a computational standpoint, it makes no
difference if an actual model exists as a black-box
mapping input to output. HDC can infer what the model
should be under its own algebra by an HIL such as
Figure 1. Given perception describing ego-motion, the

May 2025



FIGURE 3. Comparison of time slices of Event Cameras (left)
versus the actual gray-scale image (right). Note how sparse
event data is.

cx 012345 cx 0012345
_ B

RY RY

=

54 3 210

54 3 210

FIGURE 4. By permutation binding, pixel intensities can be
moved to their respective position in an image via repeating
2 permutation patterns R and C, representing the row and
column index shifts from the origin.

ego-motion itself can be predicted by raw algebraic
bindings of perception hypervectors to output hyper-
vectors tied to, in this case study, velocity bins in rele-
vant dimensions for navigation. The perception comes
from a specialized camera known as an Event Camera,
which only produces visual data by asynchronously
recording time stamps of pixels that undergo significant
intensity changes. Therefore, motion directly causes
sparse visual data to occur. These are binned in linear
projections through time to create sparse 2D images,
such as those in Figure 3, then encoded to hyper-
vectors by permuting hypervectors representing pixel
intensities to specific positions, then superposing the
pixels, employing the second algebra described earlier
by (2). By maintaining two permutation patterns, one
for row and one for column location, an image becomes
a nested subsequence of pixel intensities that have
been shifted as in Figure 4. Velocities experienced
over time are associated to time-slices and grouped to
corresponding velocity bins. These velocities can then
be predicted sequentially to relive “memories" of how
to navigate an environment. As hypervector models are
sparse learners, robust 2 kilobyte models are learned
within a fraction of a second in a CPU on mere seconds
of data, where traditional methods suchs as CNNs
require hours of data and training time, GPUs, and
gigabytes of memory to achieve that performance.

May 2025

Symbolic Representation and Learning [3]

In this work, prexisting hashing networks are employed
as black-box models that produce short, rankable
hashcodes on the order of 100 bits or less. Hyper-
dimensional Models are learned on these hashcodes
by projecting them to hyperdimensional lengths via
repetition and random permutation. Three such vastly
different hashing networks of increasing performance
are then fused together by giving each network its
own random hypervector identifying it, then binding its
model to it by XOR, and superpositioning the models
together via 1, as shown in Figure 5 Interestingly, this
boosts the performance overall by an unexpectedly
high amount, since the hypervector models give more
voting power in the consensus to models that are
a good fit, leveraging the pros and cons of each
modality. This work shows several things in the domain
of metacognition. Firstly, hypervector models can indi-
rectly learn black-box models by only interacting with
their outputs, thus learning a meta-model that approxi-
mates the original in a different space. Secondly, these
meta-models directly transfer their knowledge in the
HDC algebra despite being different modalities.

HD-Glue [4]

In this final case study, many of the previous ideas are
tied together in the context of neural network architec-
tures. This work shows that the results of [3] can be
extrapolated to deep neural networks. By taking out-
put signals, i.e., embeddings, of neural networks just
before classification, all representational power can be
converted to hypervector models by approximating the
embeddings with hypervectors. This process is shown
in Figure 6. After conversion, the results show similar
consensus properties such as those in [3], particularly
when architectures are very different. Furthermore, a
method of error correction is developed which can help
hypervectors better themselves by finding models for
parts of the dataset they got wrong. When these are
glued together into one model, a consensus with error
correction can be made to improve performance. From
a metacognitive standpoint, this shows a clear meta-
model learning throughline where an understanding of
a neural network model can be gleaned through easily
explainable policies in the form of hypervector alge-
bras. That this can be done on arbitrary architectures
is of particular interest to the metacognition community.

In conclusion, we note other features in HDC:

Hyperdimensional Computing for Metacognition



Symbolic Identifiers for each
Hashing Network

O

FIGURE 5. Hashcodes from hashing networks are approxi-
mated by hypervector models and then fused together into a
single into a consensus architecture to boost performance by
assigning random hypervector identifiers to each model.

™

|70

DTQ
|

Topos Theory

Deep Learning is often constrained by requiring
smooth gradients in continuous spaces. Indeed, we
find neural networks often perform best when non-
linearities such as ReLU are added to deal with these
constraints. From a Category Theoretical perspective,
almost all Al is confined by Topos Theory, a generaliza-
tion of topology in category theory. Recent work in [6]
shows that HDC has the potential to circumvent this
limitation by leveraging its symbolic representations as
direct morphisms that stitch together disparate topo-
logical spaces as subspaces in Hamming Spaces. In
this paper, Hamming Balls are used to achieve this,
which are subspaces of all vectors a certain Ham-
ming Distance away from a centroid hypervector. As
such, metacognitive models can be embedded within
these subspaces so long as the hypervectors are long
enough to make large enough spaces.

Non-overfitting Perfect Models

Hamming Balls can also be employed to clip an exist-
ing Al to 100% accurate predictions in the HDC space.
By going through the training set and finding the largest
hamming ball where the HIL is always correct, a meta-
model is made that can get 100% correct accuracy
on the training set but not overfit on the test set. This
reveals where a model fails, and more importantly, why,
via a metacognitive HD model.

Hypervector Memories

Typically, HD models ignore the order data is presented
in. Effectively, re-ordering doesn’t produce a different
HD model. However, this isn’t a requirement. Order
can be imposed by permutation or binding symbolic hy-
pervectors. Multiple hypervectors can be superposed
to form local memories. This was implicit in the ego-
motion task in [2], but can be made explicit for online
learning of metacognitive models over time.

Hyperdimensional Computing for Metacognition

Embedding
Final layer output signals for classification vy hilef1,1]
va ho|ef1,1]
V3 hsle[1,1]

INPUT

P
IMASE ’ Neural Net redicted
N

Class tanh

Vi
Output signals extracted as vector T

Lookup bin hypervector H; for value h;

hnl€[1,1]

H=H® Vq+H® Vo + ..+ Hy® Vyy

Random hypervector V; for component location i

FIGURE 6. Embedding to hypervector conversion.

Finite State Automata (FSA)

As HDC is capable of converting from hypervector
form to symbolic form at will, it can represent nearly
any mathematical structure in vector encodings. This,
of course, includes any Finite State Automata. Any
Metacognitive model that operates as a FSA, graph,
etc., can exist in either form, granting native direct
integration and explainability capabilities.

1. P. Kanerva, “Hyperdimensional computing: An intro-
duction to computing in distributed representation with
high-dimensional random vectors,” Cognitive computa-
tion, vol. 1, pp. 139—159, 2009. (Journal)

2. M. Anton, P. Sutor, C. Fermdiller, and Y. Aloiomonos,
“Learning sensorimotor control with neuromorphic
sensors: Toward hyperdimensional active perception,”
Science Robotics, vol. 4, no. 30, 2019. (Journal)

3. M. Anton, P. Sutor, D. Summers-Stay, C. Fermdiller,
and Y. Aloiomonos, “Symbolic representation and
learning with hyperdimensional computing,” Frontiers
in Robotics and Al, vol. 7, pp. 63, 2020. (Journal)

4. P. Sutor, D. Yuan, D. Summers-Stay, C. Fermiiller, and
Y. Aloiomonos “Gluing neural networks symbolically
through hyperdimensional computing, ” Proc. 26th
International Joint Conference on Neural Networks
(IJCNN), 2022, pp. 1-10. (Conference proceedings)

5. P. Sutor, D. Summers-Stay, and Y. Aloiomonos, “A co-
mputational theory for life-long learning of semantics,”
Artificial General Intelligence: 11th International Con-
ference, pp. 217-226, 2018. (Conference proceedings)

6. R. Faraone, P. Sutor, C. Fermdiller, and Y. Aloimonos,
“Vector Symbolic Sub-objects Classifiers as Manifold
Analogues,” Proc. 27th International Joint Conference
on Neural Networks (IJCNN), pp. 1-10. (Conference
proceedings)

May 2025



	Hyperdimensional Computing
	Case Studies
	Life-Long Learning of Semantics lll
	Hyperdimensional Active Perception hap
	Symbolic Representation and Learning symbolic
	HD-Glue hdglue

	HDC for Metacognition
	Topos Theory
	Non-overfitting Perfect Models
	Hypervector Memories
	Finite State Automata (FSA)

	REFERENCES
	REFERENCES

