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Abstract—Understanding the limitations of AI-enabled systems in high
consequence systems is critical due to the advanced capabilities of AIES,
especially those with autonomous functions, and the settings in which they are
deployed. Combinatorial testing (CT) offers approaches for test and evaluation
(T&E) of AIES to answer questions about the operating envelope of the model,
how it might perform outside of the envelope, how to know when it is leaving the
envelope, and how to design test sets that distinguish a model’s performance on
learned domains from its generalization to new domains it might encounter in
deployment. Potential exists for CT-based T&E approaches to be designed into
the AIES to support metacognition through self-evaluation.

A rtificial Intelligence (AI) and especially the sub-
field of machine learning (ML) are increas-
ingly used in high consequence AI-enabled

systems (AIES) such as those within the defense
sector. AI may be added to systems to reduce the
human footprint in dangerous settings (e.g., making
logistic resupply trucks autonomous), as a force mul-
tiplier (e.g., machine-assisted detections and tracking
for intelligence, surveillance, and reconnaissance), or
to enable future low-effort extensibility of a system with-
out explicit reprogramming (e.g., adapting to changing
adversary tactics in electronic warfare). Understanding
the limitations of AI in high consequence systems
is critical due to the advanced capabilities of these
systems, especially those with autonomous functions,
and the settings in which they are deployed. Rec-
ognizing that the increased capability afforded by AI
does not come without risk, the Department of Defense
(DOD) defines five ethical principles for AIES: respon-
sible, equitable, traceable, reliable, and governable [1].
The governable principle requires that AIES detect
unintended behavior with the ability to disengage to
avoid unintended consequences. The reliable principle
requires that AIES have “explicit, well-defined uses”
and be subject to testing across the AIES lifecycle.

A primary reason for using AIES instead of software
with programmed logic is adaptability to conditions
beyond those encountered pre-deployment. Metacog-
nition, the ability of a system to perform self-analysis or
“think about what it thinks," can include a component of

metacognitive regulation, controlling learning through
understanding its “knowledge gaps” [2] that occur dur-
ing deployment into new or changing environments.

Metacognition has been proposed for AI safety
with a discussion of four safety solution strategies
[3]. Inherently safe design involves incorporating an
understanding of how the system might fail into the
requirements and designing mitigations into the sys-
tem. This is potentially intractable with AIES operating
in the real world. Safety reserves involves validating
training datasets to ensure they are representative and
complete and rigorously testing the trained model. In
addition to a potentially infeasible test budget, this
strategy requires that the expected operating environ-
ment be fully known pre-deployment; if the environ-
ment changes, the training data may no longer be
adequate and the test coverage may no longer be
complete. Safe fail involves a mechanism that detects
when the AIES’ error rate is too high and recovers the
system to a safe state. Procedural safeguards employs
external evaluation methods during operation. Test and
Evaluation (T&E) has approaches for all except inher-
ently safe design. One difference between metacog-
nition and T&E is whether the model of the system’s
performance is internal or external. For example, the
fail safe mechanism can be a human operator or other
external system that monitors and overrides the AI or,
in metacognition, a part of the AI system that performs
self-diagnosis and disengages. Metacognition could be
used for out of distribution detection (OOD) to flag sit-

May 1



uations that were not seen in training. A metacognition
model could have a detailed understanding of system
performance to identify where and when failures occur.
The T&E methods and metrics used for OOD and
measuring system performance for fault analysis may
be internalized to become metacognitive capabilities.

A generic metacognitive architecture, the metacog-
nitive loop (MCL) addresses robustness issues in AIES
with three phases – note, assess, guide [4]. The
note phase sets expectations and uses sensory or
contextual indicators to detect anomalies, changes to
the conditions under which the system has known
good performance, as a violation of expectations. The
assess phase determines the severity of the anomaly
and performs fault location, seeking probable causes
for the anomaly. The guide phase makes recommenda-
tions to recover and monitors for whether the response
results in returning to good system performance. T&E
methods and metrics may provide functionality that
support all three phases. Known system performance
measured across the operating envelope can provide
information to detect anomalous performance, and
characterizations of the input space can provide infor-
mation to determine when the system is in unfamiliar
territory. Correlations of either the input space or inter-
mediary outputs with system performance can support
impact assessment, and T&E methods support root
cause analysis and fault location. Last, iterative evalua-
tion can support monitoring system recovery success.

T&E offers approaches to reason about the per-
formance and behavior of AI systems. What are the
dimensions of the operating envelope? Can we know
prior to leaving it? Can we transfer a model to this
domain? How can we distinguish a model’s perfor-
mance on learned domains from its generalization to
new domains? What are the top information gain data
points for improving the model for this deployment?

TEST AND EVALUATION
T&E is the systematic process of characterizing the
properties of a system and determining suitability for
a purpose. Verification testing compares a system
against the requirements specification (“did we build
the system right?”) while validation testing compares
the system against the user’s needs (“did we build
the right system?”). AIES are often characterized
in terms of correctness using performance metrics
such as accuracy and F-measure. Properties such as
fairness, explainability, interpretability, interoperability,
scalability, throughput, safety, and security may also
be assessed through T&E. The DOD uses operational
test to determine if systems are operationally effective,
suitable and survivable for intended use, and lethal in

the case of weapon systems.
T&E approaches for complex software systems are

typically applicable to testing AI. The VTP framework
extends the “Systems V” model to include testing
throughout deployment as AI models are updated to
respond to changes in mission objective, degradation
of the system, or adversarial attack, as well as outlining
a process to guide development of a comprehensive
test plan [5]. The phase of the overall system lifecycle
is used to identify the phase of test; a subsystem
considered a unit (e.g., an AI model) for the larger AIES
itself is decomposable with its own phases of test.
The fields of study that contribute to the system under
test (SUT) (e.g., computer science and statistics for
the learning algorithm, signal processing for electronic
warfare, and psychology for the human-machine team)
combined with the hierarchy of test inform the goals
of the test (e.g., measuring model accuracy versus
measuring trust or cognitive load). The hierarchy of test
informs test plan efficiency which, along with the goals
of the test, informs the test methods.

The NIST AI Risk Management Framework (AI
RMF) describes how AI risks differ from traditional
software [6]. They can be organized into risks arising
from data quality, nature of AI models, and AI use
leading to specific risks of test insufficiency.

Data quality. The data used to train and test AI may
not be an accurate representation of the operational
environment. The data may be biased, complex, of
large volume, stale, or detached from the original con-
text. There is additional privacy risk due to enhanced
data aggregation by AI capabilities. Last, supervised
learning techniques and most test techniques rely on
“ground truth” from data labeled by a human or other
system with verified correctness; human labeled data
is often difficult to get or non-existent due to labeling
cost, and the need for an AI system to make inferences
often implies the non-existence of another system or
algorithm that can correctly label the same data.

Nature of AI models. AI models may be more com-
plex with greater scale than traditional software due to
the complexity of functions they represent. Pre-trained
models may be reused for new purposes or transferred
to different operating environments for which they are
not suitable, and risks or other issues may not be
communicated or propagated forward. Last, emergent
properties of AI models make predicting failure modes
challenging, and opacity of models as learned weights
rather than encoded logic makes the fault location T&E
process more difficult.

AI use. The use of AI systems leads to post-
deployment challenges with maintenance, and risk
may arise from data, concept, or model drift. AI or
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the surrounding environment may change more rapidly
than more static software or hardware systems, and
the meaning of concepts that AI is intended to model
may change over time. Maintenance for AIES is more
frequent than for other software due to drift.

Risk to testing. These risks lead to test difficulties,
increasing the risk of test insufficiency. The data and
model are both difficult to white-box analyze. Addition-
ally, there is a lack of the use of best practices for data,
model, and evaluation documentation. Last, the lack
of development controls common in software leads to
difficulty determining when or what to test. Variation in
outputs of software is due to code changes, whereas
variations in outputs for AI can result from changes to
the training data, test data, or code.

MITRE’s Systems Engineering Processes to Test
AI Right (SEPTAR) describes differences in T&E be-
tween AI and traditional software [7]. Two differences
that lead to challenges establishing test adequacy for
AI are non-determinism and implicit requirements.

Non-determinism. Traditional software is determin-
istic, so test cases that previously passed should con-
tinue to pass if the code is unchanged, and there is a
singular “correct” answer for an input. Many subfields
of AI utilize statistical learning and produce systems
that are deterministic at time of inference but give
different outputs for similar inputs or inputs that differ in
unmeasured ways. Still, some AI systems, especially
generative AI, are probabilistic and select from a set
of possible outputs with defined probabilities. AIES
often approximate a function and give answers that are
“close enough,” requiring a threshold for what consti-
tutes a correct answer in order to use “all-or-nothing”
performance measures that count (e.g., the number
of true positives). There may be no single correct
answer (e.g., language translation). Thus, testing AI
may require a larger test corpus due to needing large
amounts of test data to estimate system correctness.

Implicit requirements. Sufficient test sets for both
software and AI need to cover all conditions that could
impact system performance; however, unlike software
that has requirements, AI requirements are often im-
plicitly derived from the training data, and conditions
that impact the system may not be known up front.
Even which conditions are present in an input sample
may be difficult to characterize. AIES are intended to
operate in an “open universe” so there is a resistance
to defining boundaries, and a large corpus of training
data is often used in hopes that the “law of large
numbers” mean all conditions will be covered. Both of
these add difficulty to characterizing the data and limit
the use of approaches for test adequacy measurement
from software (e.g., input space partitioning).

T&E requires that the system use cases or re-
quirements be bounded in order to have explainable
performance in a well-defined operating environment,
yet a primary reason to employ AI is its ability to
generalize outside of the training data or learn to adapt
to new settings. Many trustworthy AI characteristics are
related to the input space due to AI’s data dependence.
AI should be robust to small changes in the input space
with security against adversarial inputs. Unintended
data bias that would prevent the AI from learning the
true function and generalize outside of the training data
should be mitigated. Thus, characterization of the input
space, while difficult, is important for T&E.

COMBINATORIAL TESTING
Combinatorial testing (CT) is a black-box approach
with demonstrated effectiveness in detecting software
failures due to component interactions. The SUT is rep-
resented by an input parameter model (IPM) specifying
the k system components and their values, vi for the
i th component. Test suites such as covering arrays are
generated where a test is an assignment of values to
components. CT requires discrete component values.
CT is pseudo-exhaustive; the strength t determines
the size of combination considered. Combinatorial cov-
erage metrics provide measures of test adequacy;
total t-way coverage describes the proportion of t-way
component interactions appearing in a test suite [8].
Covering arrays have the property that, for any set
of t components, all interactions of those components
appear in some row in the array. Covering arrays are
efficient; the number of rows necessary in the test suite
grows logarithmically in k for fixed t and v .

AI models map the input space to the output
space by learning relationships between combinations
of features and labels; functions where a single feature
is predictive for an output generally do not require
AI. Combinatorial coverage CCt (D) has been adapted
to measure gaps in coverage of the input space by
dataset D [9]. Here, the IPM is constructed over the
k features of the input space and their values rep-
resenting the universe of the AIES, and each row of
a combinatorial array is the feature values present
in a given sample. For deep learning where feature
engineering is not performed, metadata may act as a
surrogate for features in the sample and so combina-
torial coverage is computed over rows of metadata.
Consider the simple example binary dataset in Table 1.
For t = 2, there are

(3
2

)
feature combinations. Of

the
(3

2

)
22 = 12 2-way interactions, 10 are present,

so CC2 = 0.83. Missing interactions are {(Hair, Yes),
(Live Birth, No)} and {(Live Birth, No), (Eco, Ocean)}.
Set difference combinatorial coverage SDCCt (A \ B)
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TABLE 1. Animal classification dataset with binary features.

Hair Live Birth Eco Class

No Yes Ocean Orca
Yes Yes Woods Wolf
Yes Yes Ocean Otter
No No Woods Owl

measures the proportion of t-way interactions present
in dataset A that are absent from dataset B [9].

Measuring and identifying gaps in the combinatorial
coverage of the input space has a number of applica-
tions for AI T&E. Computing CCt (D) over the training
dataset D gives an estimate of the operating envelope
by enumerating the interactions seen in training. Trans-
fer learning is the process of deploying AI developed
in a source domain S to a target domain T with no or
minimal modification. Computing SDCCt (T \ S) may
indicate when a model can be transferred. Training a
classification model on imagery of planes in Southern
California and transferring to Northern California im-
agery exhibited a drop in performance with zero shot
transfer, while there was no drop transferring the oppo-
site direction. The Northern imagery dataset covered
10% more 2-way interactions present in the Southern
imagery than the South covered of the Northern in-
teractions [9]. Additionally, this provides a mechanism
to intelligently select or collect samples to close the
gap between source and target domains and improve
the model for the target deployment. Retraining on the
source dataset augmented with a small number of im-
ages from the target domain selected by set differenc-
ing achieved higher accuracy than augmenting with the
same number selected randomly [10]. Coverage can
inform test set design beyond random sampling. Given
black-box knowledge of the training dataset, test sets
are designed to cover the interactions of the intended
operating envelope. With white-box knowledge, SDCC
can be used to design representative or challenging
datasets. Performance on a modified MNIST dataset
was higher on test samples with all feature interactions
covered by the training set and lower on those with
uncovered interactions [11].

Understanding the dimensions of the operating en-
velope is necessary for computing the boundaries and
determining when the AI is leaving it. Not all (metadata)
features or their interactions impact a model, and
including non-important feature interactions or exclud-
ing important ones may lead to misleading coverage
results. Systematic inclusion/exclusion is an approach
based on CT and Design of Experiments to identify
impactful features [12]. The approach constructs a
universal test set that covers all interactions. For each

feature interaction, it constructs a training dataset that
excludes that interaction, trains a model from scratch,
and evaluates the model on the universal test set
partitioned into a set of samples that contains the
excluded interaction and a set that does not. All other
aspects of the training process (e.g., training dataset
size, hyperparameters, and architecture) are kept con-
stant. The performance deltas between covered and
uncovered test partitions are analyzed, and feature
interactions for which performance differs statistically
are considered to be important. For a satellite imagery
dataset with labeled aircraft, average pan resolution,
biome, and hour of day impacted both precision and
recall, season impacted only recall, and off nadir max
impacted neither. In addition to efficiency gained by
limiting combinations considered to strength t , identify-
ing impactful features and features interactions through
systematic pre-deployment test may reduce dimen-
sionality for coverage computations in post-deployment
monitoring.

FUTURE WORK
CT has been demonstrated as an external evaluation
mechanism for AI, primarily during pre-deployment
testing with proposed applications for post-deployment
monitoring. Workshop feedback on the ideas in this
short paper will be used to identify opportunities to de-
sign CT-based T&E approaches into the AI system for
self-evaluation to answer the same questions through
metacognitive capabilities. Is this situation unfamiliar?
Has my performance degraded? What data do I need
to improve for this mission?

Additionally, future work for CT-based T&E of AIES
would provide functionality within the MCL framework.
Specifically, early combinatorial coverage metrics were
binary, measuring presence or absence of interactions,
but statistical learning employed by many AIES is im-
pacted by frequency of appearance. Preliminary work
has been completed for measuring frequency coverage
and differences in combinatorial frequency, but more is
needed to support the note phase. CT utilizes covering
arrays to determine whether faults up to a specified
strength t exist in a software system, but these may
not distinguish between interactions to perform fault
location. Adaptive testing may be used to generate
new tests to distinguish interactions always appearing
together and in only faulty tests, or locating arrays may
be used when the test suite must be designed up
front. CT-based approaches to fault location in AIES
have not been applied, to the best of our knowledge.
Additionally, CT may have application in performing
severity assessment of data or model drift in support
of the assess phase.
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