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Abstract—Conventional artificial intelligence (Al) lacks a level of adaptability
required for the dynamic environments and threats faced by safety-critical

tasks. Metacognitive Al, which is Al technology capable of introspection,
self-monitoring, and self-adaptation, would be a development that can

improve the explainability and trustworthiness of systems for human operators,
and improve model development and resilience when encountering new domains.
In this paper, we provide a novel framework for Al improvement in operational and
cross-platform domain settings in the form of a well-defined formal foundational
framework relating Al metacognition, training, and past performance that extends
the certainty and competence framework for discriminative models through

the introduction of relevance structures, and related scores. We introduce the
theory of relevance structures, provide a preliminary accounting of meta-objective
functions relative to formal task specification based on relevance, and

discuss how such a framework accounts for Knightian uncertainty as encountered
by Al models in open-world environments. The intent of this paper is to

outline the potential of this system and demonstrate that the notion of relevance
is a necessary prerequisite for Al-enabled systems capable of metacognition.

long with the rapidly increasing development

and integration of artificial intelligence (Al) into

everyday life, including safety-critical systems,
there is a growing need for robust and resilient sys-
tems for assurance, monitoring, and regulation in order
to improve reliability, error detection and correction,
and efficient resource utilization. Metacognitive Al is a
promising research area aiming to improve Al-enabled
systems by developing capabilities for self-monitoring
and self-regulation beyond straightforward expected
utility maximization." We propose that the certainty and
competence framework developed by Berenbeim et al.
can be suitably generalized for developing metacogni-
tive Al by providing a means of furnishing Al systems
an internal representation of their capabilities for the
purposes of self-monitoring and self-regulation.? The
certainty and competence framework treats certainty
as an intrinsic property of models indicating the relative
confidence between decisions, while competencies are
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scores formed from certainties and the empirical dis-
tribution of data.? When competence is high, high
certainty signals reliable assignments over lowers cer-
tainty, which would signal misassignment or possible
novelty; this can be a catalyst for introspection.? We
expand on the certainty and competence framework,
proffering the notion of relevance, to apply to general
classes of Al models where the output of f can be
placed into a proximate relation with a target object.
The target object can be a singleton set with one label
as in the classical case, multisets, bounding boxes,
trees, or even hierarchical data structures with metric.

Our definition for relevance is guided by our in-
tuition that the output s of an Al model f should
overlap with a target t, so that whenever t is properly
contained in s, the extraneous information provided
by s is deemed irrelevant, and whenever s is strictly
contained in t, we may only have partial satisfaction.
These intuitions remain independent of whether the
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model f is discriminative with target t or generative with
prompt identifying a target t. We first define relevance
structures before defining notions of relevance relative
to said structures.

A relevance structure R is defined by a signature
U,0,=,~,\,|-|) satisfying the following:

1) (U, =) is a partial order;

2) forall x ed, 0 < x;

3) ~: U xU — U such that for all x,y,z € U,
X ~y =< x,yandif z < x and z < y, then
Z2X~Y;

4) ~ is commutative, associative, and idempotent;

5) \ :U xU — U such that for all x,y,z € U,

e (X\y) ~(¥\x)=0;
e ify ~z=0,then x ~z < x\y;

6) |-|: U — Rxp such that whenever x < y, then
|x| <ly|, and |x| = 0 if and only if x = 0.

A special subclass of relevance structures can be
identified with posets which are closed under rela-
tive pseudo-complements. If the poset U of a rel-
evance structure is closed under relative pseudo-
complements, that is, there is a relation — such that
Xx — y denotes the maximal element such that x —~
(x — y) <y, then we may not only define —x := x —
0, but define x\y :=x ~ -y :=x ~(y — 0).

We say f : R — R’ is a relevance morphism
between relevance structures if:

i. fis a poset-morphism, x <% y = f(x) <% f(y);

i. fis meet-preserving, f(x ~% y) = f(x) ~F
fy);

iii. f(0)=0;

iv. induces an order-preserving map f : R — R’
such that fo|-|u =] |u of.

If ¥ in (iv.) induces to a field morphism between R and
R’, we say f is an algebraic relevance morphism. We
let Relv denote the category of relevance structures,
and ARelv the category of relevance structures whose
morphisms consist solely of algebraic morphisms. For
all practical considerations, we may fix R to be the field
of real-numbers, R.

Relevance structures can be found across many
mathematical topics and for structures of interest. Of
general interest to descriptive set theory, probability
theory, and the study of dynamical systems, we find:

Theorem 1:

Both C and N, Cantor and Baire space respectively,
can be given relevance structures.

C can straightforwardly be given a canonical relevance
structure. Since we require that |0|» = 0, in general we
cannot straightforwardly define a relevance structure
on A with respect to a given embedding of A/ into R.

A symmetric relevance structure is any such R that
is further closed with respect to a join operation —.
Consequently,

Theorem 2:

If £ is a relatively complemented lattice, then £ can be
endowed with a \ function and value map such that £
is a relevance structure.

Many of our target use cases can be given an un-
derlying Heyting algebra structure, and since £ above
applies to bounded lattices as well, any practical logic
thus can be endowed with a relevance structure.

We note that in any given symmetric relevance
structure we can define the symmetric difference op-
eration A point-wise as xAy = (x\y) — (y\x) for
arbitrary x,y as U will be closed under —, whereas
in arbitrary relevance structures we cannot guarantee
the existence of joins.

In general relevance structures, for any non-bottom
element s,t € U we can define two directed rele-
vance scores where t denotes a target and s denotes
a response that provide penalized response scores
emphasizing exploration and parsimony respectively.

_ s~ i —It\s|
[Exploratory Relevance] ot(s) = —

M

. s~ 1 —|s\t]
[Parsimonious Relevance] pt(s) = —

)

where &(s) is defined to penalize responses s for
what is missing in the target. On the other hand,
the parsimonious relevance function p:(s) will penal-
ize responses s that exceed the scope of t. Further,
parsimonious directed relevance can be shown to be
unbounded below, i.e. pi(s) € (—oo, 1] depending on
choice of | - | and s. When recording either or both
relevance scores, we report them as the relevance of
s to t (or with respect to t).
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For any symmetric relevance structure, we can
further define the mutual relevance of s and t by:

|s ~ t| — |sAt]
BTy

(©)
In particular, we have defined mutual relevance so that
p(s, t) is a real-valued function whose image lies within
[—1,1]. Further, we have defined p so that when s
agrees with ¢ relative to the underlying poset structure,
we attain a value of 1, and when s maximally disagrees
with t, we attain a value of -1. Recall the definition of
(classical) empirical competence:?

[Symmetric Relevance] p(s,t) =

£(F; Dy) = ﬁ Sy, 1] (@)
(Xi.y1)

where ¢(f(x;)) is the certainty score of f on sample input
x;. Recognizing that the term [1=y, — 1] is the sym-
metric relevance p(f(x;), y;) in a discriminative single-
label model, we define general empirical competence
with respect to p, so that empirical competence of f at
task T with relevance structure R is a sample average
of the product of the certainty score with the relevance
of the prediction relative to the target:

&0 00) = 0 3 <U0L)y)  (6)
)

(i yi

Similarly, we may define the empirical exploratory
competence and empirical parsimonious competence
with §:(s) and p:(s).

Relevance structures have been identified for
single-label, multi-label, bounding boxes, multiset,
poset identification, and multi-poset related tasks. The
latter two tasks include those involving formal con-
cept analysis and general hierarchical data structures.
Through the use of multi-posets, multi-domain rele-
vance scores can be composed from individual task
relevant scores. Initially, relevance scores should be
computed for models trained on labeled datasets, al-
though in principle suitably specified relevance struc-
tures allow for training involving unlabeled data types.
Further, the application of certainty and competence
scores with the competence framework have both the-
oretical and empirical support for the identification of
out-of-distribution data, and providing human agents
real-time information of model performance.?®* The
empirical work of Berenbeim et. al® examining the
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certainty and competence framework for single-label
classification tasks demonstrated that certainty-based
features can be used to develop out-of-distribution
detection tests that outperform state-of-the-art Energy-
Based detection tests, where test performance strongly
correlated with model competence, improving upon
the baseline Monte Carlo Dropout AUPR-OUT perfor-
mance on average by 14.4% and 16.5%, and reducing
the FPR95TPR by 54.2% and 37.6% across network
traffic classification and image classification tasks. Re-
latedly, neurosymbolic Al systems implemented with
logic tensor networks, where neural network classifiers
were augmented by axioms guiding classification, had
demonstrable improvement in empirical competence
within categories over baseline neural network models
- for some categories moving from -.994 and -.976
empirical competence to .574 and .694 respectively.®
These improvements occurred independent of whether
data was balanced or unbalanced indicates, and ac-
companied similar shifts in the F1 score, corroborating
the intuition that model competence can indicate a
balance between precision and recall, with the added
benefit of providing signals that False Positives occur
with lower certainty than in category True Positives.®

Similar empirical results are expected to follow for
multi-label and multiple image recognition tasks. To
give a concrete example of a relevance structure for
multi-label cases, consider (U, <) to be the power-set
over some finite set of labels with ordinary inclusion,
and |-| the order map counting the number of objects in
the subset. From here, relevance scores can be directly
computed with respect to counting the order of the
sets, while the certainty score would require computing
the differences of the relative implied probabilities of
the proposed subset against the next alternative sub-
set. Importantly, the certainty score is not a distance
between the proposed solution and the true solution,
but a confidence score in the proposed solution over
the next alternative.

One can similarly treat the task of bounding box
recognition by considering an underlying topology for
the unit square whose subbase is generated by bound-
ing boxes B, whose coordinates correspond to the
rational representation of the corner pixel positions.
We can denote efficiently each bounding box as an
ordered pair of pairs, so that B = ((x;, ¥1), (Xn, ¥n)). S0
for instance, if we normalize a 256x220 pixel image
to the unit square format, if B = (55, 555): (258, 255}
would be a bounding box in the lower part of the
third quadrant of the unit square from the center. From
here, ordinary set operations apply up to and including
relative complements, where the natural choice for the



order function |B| is the area of the figure generated by
individual bounding boxes. In this setup, we can handle
instances where our target consists of one bounding
box, many, or otherwise general rectilinear shapes.
This setup can be further amended to allow for general
polygonal recognition within images by also allowing
the generating set to account for triangles formed
by taking the upper or lower half of each generating
bounding box.

There is a vast and growing literature relating cate-
gory theory to formal specification,®® control theory,”®
and machine learning.® There is a deep connection
between computation and control theory that can be
properly leveraged through Galois connections and ad-
junctions, viz institutions, dependent lenses, Bayesian
open games, and their composition.>® Suitably iden-
tified complete partial orders (CPO) can be endowed
with relevance structures, which contain inherent fixed
points that can inform control structure; every compu-
tation has a dual form in a control structure - relevant to
machine learning, every forward pass through a neural
network is adjoint to back-propagation through train-
ing.® Moreover, whenever relevance CPOs are identi-
fied with formally specified tasks, future metacognitive
Al architectures may be capable of implementing for-
mal concept analysis between tasks identified through
relevance scores; this would provide a means of Al-
enabled systems to assess whenever their outputs are
in relevant alignment to given tasks.

Evidence is being gathered that Al models as
presently trained become less corrigible over time,
and become resistant to belief updates.’ If models
become less corrigible with greater training, they be-
come increasingly vulnerable to Knightian uncertainty,
especially as they encounter data outside of previously
formally well-defined tasks beyond their symbolic vo-
cabulary and prior probability distributions. Townsend
et al. identify that the benefits of practical Al-enabled
systems are contingent upon four interrelated problems
where situational uncertainty cannot be quantified or
measured with respect to probability weight assign-
ments: actor ignorance, practical indeterminism, agen-
tic novelty, and competitive recursion."’

Because relevance scores are defined as intrinsic

point estimates of models themselves relative to their
empirical performance, we propose their use to ad-
dress metacognitive Al challenges, particularly those
concerning Knightian uncertainty and the problem of
incorrigibility. Specifically, relevance can be used to
allow Al-enabled systems to recognize the boundaries
of their own competence (introspection) determined
by their training and previous deployment in field.
Relevance structures immediately address the problem
of actor ignorance, which refers to the difficulty faced in
specifying whether different possibilities are relevant to
a decision outcome, as well as the problem of practical
indeterminism faced when multiple unknown future
possibilities generated by the decision environment
have yet to be specified, including those of agentic
novelty, which may be introduced by users or other Al
agents themselves.!" Incorrigibility may be remedied
by more heavily penalizing models which overestimate
their competencies, and especially those which fail to
identify the human agents consensus around relevant
responses.

This use of relevance structures and competence
as a means to address actor ignorance and indeter-
minism finds support in Berenbeim et al.?, specifically
experiments involving out-of-context image recogni-
tion. Berenbeim et al. demonstrated that using com-
petence and certainty guided detection methods with
the outputs of pre-trained ResNet model yielded bet-
ter performance than comparable EnergyBased out-
of-distribution detection methods, particularly indicat-
ing suitability for actor ignorance and agentic novelty
with minimal overhead training.3 Further, Berenbeim et
al. introduce cost-functions for competence optimiza-
tion, which would improve corrigibility during training.2
These cost-functions can be generalized using the
relevance structure framework introduced here.

The use of relevance scoring to provide immediate
internal displays for metacognitive Al is in keeping
with the suggestion of Tankelevitch et al. that it is
necessary for Al-enabled systems to have the ability
to self-monitor and self-recognize when its own cog-
nitive processes are inadequate and require adapta-
tion and additional input from the user.'> Moreover,
implementations of relevance scoring for control helps
address four of the Al failures that can be addressed
by metacognitive Al: transparency, reasoning, adap-
tation, and perception;'? and mediating conflicts that
arise from actor ignorance, practical indeterminism and
agentic novelty.
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The views expressed in this paper are those of the
authors and do not reflect the official policy or position
of the United States Military Academy, Department of
the Army, Department of Defense, or U.S. Government.
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